Input

Output

Sample Input

6 3
1 2 3 2 1 2
1 5
3 6
1 5

Sample Output

1
2
1

HINT

\(n <= 40000\),$ m <= 50000$

题意:

求区间众数

题解:

见代码

//解决本题的重要性质:
//对于两个区间a,b,其中已知a区间的众数k
//则众数一定为k或是b区间的任意一个数
#include<bits/stdc++.h>
#define re register int
using namespace std;
const int N=40010,M=410;
int n,q,m,blen,bsum;
int a[N],b[N];//b为离散数组
int bl[M][M];//bl[i][j]表示第i个块中的第j个数,bl[i][0]表示第i个块的长度
int bk[N];//bk[i]表示第i个数(在原数列中)在第bk[i]个块中
int f[M][M];//f[i][j]表示第i块到第j块之间的众数
int g[N][M];//g[i][j]表示i在前j个块中出现的次数
void init(){//初始化
for(int i=1,j=1;i<=n;++j){
int k;
for(k=1;k<=blen&&i<=n;++i,++k){
bk[i]=j;
bl[j][k]=a[i];
}k--;
bl[j][0]=k;
bsum=j;
}//处理块
for(int i=1;i<=bsum;++i){
for(int j=1;j<=m;++j){
g[j][i]=g[j][i-1];
}
for(int j=1;j<=bl[i][0];++j){
g[bl[i][j]][i]++;
}
}//预处理g数组
for(int i=1;i<=bsum;++i){
for(int j=i;j<=bsum;++j){
int num=f[i][j-1];int mx=g[num][j]-g[num][i-1];
for(int k=1;k<=bl[j][0];++k){
int now=g[bl[j][k]][j]-g[bl[j][k]][i-1];
if(now>mx||(now==mx&&bl[j][k]<num))num=bl[j][k],mx=now;
}
f[i][j]=f[j][i]=num;
}
}//预处理f数组
}
void read(){//读入
cin>>n>>q;blen=sqrt(n);
for(int i=1;i<=n;++i)scanf("%d",a+i),b[i]=a[i];
}
void lsh(){
sort(b+1,b+n+1);
m=unique(b+1,b+n+1)-b-1;
for(int i=1;i<=n;++i)a[i]=lower_bound(b+1,b+m+1,a[i])-b;
}
void work(){
int last=0;
while(q--){
int l,r;
scanf("%d%d",&l,&r);
l=(l+last-1)%n+1;
r=(r+last-1)%n+1;
if(l>r)swap(l,r);
static int bj[M],cnt,v[N];cnt=0;//bj记录边角的数据,cnt为边角数据的数量
int L,R,num,mx;
if(bk[l]==bk[r]){//在同一块内暴力求众数
for(int i=l;i<=r;++i)bj[++cnt]=a[i],v[a[i]]++;
mx=0;
for(int i=l;i<=r;++i){
if(v[a[i]]>mx||(v[a[i]]==mx&&a[i]<num))num=a[i],mx=v[a[i]];
}
printf("%d\n",last=b[num]);
}else{//在不同块时,将中间当成一大块和边角比较
//根据性质,众数只有可能是中间这一块的众数或是边角上的数
//所以暴力枚举再判断就行了
re i;
for(i=l;bk[i]==bk[i-1];++i){
bj[++cnt]=a[i];v[a[i]]++;
}L=bk[i];
for(i=r;bk[i]==bk[i+1];--i){
bj[++cnt]=a[i];v[a[i]]++;
}R=bk[i];
num=f[L][R],mx=v[num]+g[num][R]-g[num][L-1];
for(i=1;i<=cnt;++i){
int now=v[bj[i]]+g[bj[i]][R]-g[bj[i]][L-1];
if(now>mx||(now==mx&&bj[i]<num))num=bj[i],mx=now;
}
printf("%d\n",last=b[num]);
}
for(re i=1;i<=cnt;++i)--v[bj[i]];//v数组要这样清空,复杂度O(cnt),不能用memset,那样是O(n)
}
}
int main(){
read();
lsh();
init();
work();
}

蒲公英(bzoj2724)(分块+区间众数)的更多相关文章

  1. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  2. 【BZOJ2724】蒲公英 题解(分块+区间众数)

    题目链接 题目大意:给定一段长度为$n$的序列和$m$次询问,每次询问区间$[l,r]$内的最小的众数.$n\leq 40000,a_i\leq 10^9$ --------------------- ...

  3. BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]

    传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...

  4. LOJ6285 数列分块入门9(分块 区间众数)题解

    题意:给出区间内的最小众数 思路:分块,离散化每个数,开vector记录每个数p出现的位置,这样就能二分出L,R以内p的个数了.众数有一个性质,用mode(a)表示集合a的众数,那么mode(a∪b) ...

  5. 洛谷P4168 蒲公英 分块处理区间众数模板

    题面. 许久以前我还不怎么去机房的时候,一位大佬好像一直在做这道题,他称这道题目为"大分块". 其实这道题目的思想不只可以用于处理区间众数,还可以处理很多区间数值相关问题. 让我们 ...

  6. 【BZOJ2724】蒲公英(分块)

    [BZOJ2724]蒲公英(分块) 题面 洛谷 谴责权限题的行为 题解 分块什么的都不会,根本就没写过几次. 复杂度根本不会分析,吓得我赶快来练练. 这题要求的是区间众数,显然没有什么很好的主席树之类 ...

  7. BZOJ2724 [Violet]蒲公英(分块)

    区间众数.分块,预处理任意两块间所有数的众数,和每块中所有数的出现次数的前缀和.查询时对不是整块的部分暴力,显然只有这里出现的数可能更新答案.于是可以优美地做到O(n√n). #include< ...

  8. 【BZOJ 2724】 2724: [Violet 6]蒲公英 (区间众数不带修改版本)

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1908  Solved: 678 Description In ...

  9. luogu4168蒲公英(区间众数)

    luogu4168蒲公英(区间众数) 给定n个数,m个区间询问,问每个询问中的众数是什么. 题面很漂亮,大家可以去看一下. 对于区间众数,由于区间的答案不能由子区间简单的找出来,所以似乎不能用树形结构 ...

随机推荐

  1. 白盒静态自动化测试工具:PMD使用指南

    参考文献:http://www.oschina.net/p/pmd/http://www.cnblogs.com/flyme/archive/2011/09/09/2172548.htmlhttp:/ ...

  2. 16款值得一用的iPhone线框图模板 (PSD & Sketch)

    在任何网站或移动应用设计的过程中,线框图作为设计元素和功能的图示,它有助于帮助定义和更好地传达信息层次结构,让参与设计和开发的人员更好的理解设计师的思路和设计的功能点. 即使线框图设计是一个比较耗时的 ...

  3. adb占用

    输入netstat -ano | findstr "5037" .然后会弹出提示告诉你哪些进程占用了该端口,记住非0地址的后面的数字 打开任务管理器,点击“进程“,“查看”-“选择 ...

  4. abp 的坑

    多数据库连接问题 viewmodel的验证问题 发布后,一段查找sln查找代码无法适用生产环境问题 多语言问题,默认中文设置与模板配置文件不统一

  5. vue父子间通信

    父组件是通过props属性给子组件通信的来看下代码: 父组件: <parent> <child :child-com="content"></chil ...

  6. 13.11.20 jquery 核心 siblings() 获得同类(不包含自己)循环所有,

    jquery 核心1.选择器,2. 创建dom 元素 3. jquery 执行时 4. 延迟执行 5. 循环 6. 计算长度.7.8 获得选择器和所在节点 9. 获得下标 10. 元素存放数据  11 ...

  7. 《Just for Fun》---读后感

    <Just for Fun>本书是Linux之父林纳斯自传,书名的意思是:只是为了好玩.主要是讲了林纳斯的人生经历,以及Linux的诞生过程.Linux从一个终端仿真器到一个世界瞩目的操作 ...

  8. Apache Struts 2 Documentation Core Developers Guide

    http://struts.apache.org/docs/core-developers-guide.html

  9. spring + rs + RocketMQ 【精】

    cxf-rs-rocketmq 项目地址:见git │ pom.xml │ └─src ├─main │ ├─java │ │ └─cn │ │ └─zno │ │ ├─pojo │ │ │ Rece ...

  10. 使用LVM对系统盘进行扩容

        不知道大家有没有碰到在安装CentOS时个,对系统每个挂载点分配多大容量比较合适的问题?如果挂载点容量分配大小,在某天不够用的时候怎么办:分配太大又存在浪费的情况.特别是在遇到系统盘特别小的时 ...