Input

Output

Sample Input

6 3
1 2 3 2 1 2
1 5
3 6
1 5

Sample Output

1
2
1

HINT

\(n <= 40000\),$ m <= 50000$

题意:

求区间众数

题解:

见代码

//解决本题的重要性质:
//对于两个区间a,b,其中已知a区间的众数k
//则众数一定为k或是b区间的任意一个数
#include<bits/stdc++.h>
#define re register int
using namespace std;
const int N=40010,M=410;
int n,q,m,blen,bsum;
int a[N],b[N];//b为离散数组
int bl[M][M];//bl[i][j]表示第i个块中的第j个数,bl[i][0]表示第i个块的长度
int bk[N];//bk[i]表示第i个数(在原数列中)在第bk[i]个块中
int f[M][M];//f[i][j]表示第i块到第j块之间的众数
int g[N][M];//g[i][j]表示i在前j个块中出现的次数
void init(){//初始化
for(int i=1,j=1;i<=n;++j){
int k;
for(k=1;k<=blen&&i<=n;++i,++k){
bk[i]=j;
bl[j][k]=a[i];
}k--;
bl[j][0]=k;
bsum=j;
}//处理块
for(int i=1;i<=bsum;++i){
for(int j=1;j<=m;++j){
g[j][i]=g[j][i-1];
}
for(int j=1;j<=bl[i][0];++j){
g[bl[i][j]][i]++;
}
}//预处理g数组
for(int i=1;i<=bsum;++i){
for(int j=i;j<=bsum;++j){
int num=f[i][j-1];int mx=g[num][j]-g[num][i-1];
for(int k=1;k<=bl[j][0];++k){
int now=g[bl[j][k]][j]-g[bl[j][k]][i-1];
if(now>mx||(now==mx&&bl[j][k]<num))num=bl[j][k],mx=now;
}
f[i][j]=f[j][i]=num;
}
}//预处理f数组
}
void read(){//读入
cin>>n>>q;blen=sqrt(n);
for(int i=1;i<=n;++i)scanf("%d",a+i),b[i]=a[i];
}
void lsh(){
sort(b+1,b+n+1);
m=unique(b+1,b+n+1)-b-1;
for(int i=1;i<=n;++i)a[i]=lower_bound(b+1,b+m+1,a[i])-b;
}
void work(){
int last=0;
while(q--){
int l,r;
scanf("%d%d",&l,&r);
l=(l+last-1)%n+1;
r=(r+last-1)%n+1;
if(l>r)swap(l,r);
static int bj[M],cnt,v[N];cnt=0;//bj记录边角的数据,cnt为边角数据的数量
int L,R,num,mx;
if(bk[l]==bk[r]){//在同一块内暴力求众数
for(int i=l;i<=r;++i)bj[++cnt]=a[i],v[a[i]]++;
mx=0;
for(int i=l;i<=r;++i){
if(v[a[i]]>mx||(v[a[i]]==mx&&a[i]<num))num=a[i],mx=v[a[i]];
}
printf("%d\n",last=b[num]);
}else{//在不同块时,将中间当成一大块和边角比较
//根据性质,众数只有可能是中间这一块的众数或是边角上的数
//所以暴力枚举再判断就行了
re i;
for(i=l;bk[i]==bk[i-1];++i){
bj[++cnt]=a[i];v[a[i]]++;
}L=bk[i];
for(i=r;bk[i]==bk[i+1];--i){
bj[++cnt]=a[i];v[a[i]]++;
}R=bk[i];
num=f[L][R],mx=v[num]+g[num][R]-g[num][L-1];
for(i=1;i<=cnt;++i){
int now=v[bj[i]]+g[bj[i]][R]-g[bj[i]][L-1];
if(now>mx||(now==mx&&bj[i]<num))num=bj[i],mx=now;
}
printf("%d\n",last=b[num]);
}
for(re i=1;i<=cnt;++i)--v[bj[i]];//v数组要这样清空,复杂度O(cnt),不能用memset,那样是O(n)
}
}
int main(){
read();
lsh();
init();
work();
}

蒲公英(bzoj2724)(分块+区间众数)的更多相关文章

  1. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  2. 【BZOJ2724】蒲公英 题解(分块+区间众数)

    题目链接 题目大意:给定一段长度为$n$的序列和$m$次询问,每次询问区间$[l,r]$内的最小的众数.$n\leq 40000,a_i\leq 10^9$ --------------------- ...

  3. BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]

    传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...

  4. LOJ6285 数列分块入门9(分块 区间众数)题解

    题意:给出区间内的最小众数 思路:分块,离散化每个数,开vector记录每个数p出现的位置,这样就能二分出L,R以内p的个数了.众数有一个性质,用mode(a)表示集合a的众数,那么mode(a∪b) ...

  5. 洛谷P4168 蒲公英 分块处理区间众数模板

    题面. 许久以前我还不怎么去机房的时候,一位大佬好像一直在做这道题,他称这道题目为"大分块". 其实这道题目的思想不只可以用于处理区间众数,还可以处理很多区间数值相关问题. 让我们 ...

  6. 【BZOJ2724】蒲公英(分块)

    [BZOJ2724]蒲公英(分块) 题面 洛谷 谴责权限题的行为 题解 分块什么的都不会,根本就没写过几次. 复杂度根本不会分析,吓得我赶快来练练. 这题要求的是区间众数,显然没有什么很好的主席树之类 ...

  7. BZOJ2724 [Violet]蒲公英(分块)

    区间众数.分块,预处理任意两块间所有数的众数,和每块中所有数的出现次数的前缀和.查询时对不是整块的部分暴力,显然只有这里出现的数可能更新答案.于是可以优美地做到O(n√n). #include< ...

  8. 【BZOJ 2724】 2724: [Violet 6]蒲公英 (区间众数不带修改版本)

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1908  Solved: 678 Description In ...

  9. luogu4168蒲公英(区间众数)

    luogu4168蒲公英(区间众数) 给定n个数,m个区间询问,问每个询问中的众数是什么. 题面很漂亮,大家可以去看一下. 对于区间众数,由于区间的答案不能由子区间简单的找出来,所以似乎不能用树形结构 ...

随机推荐

  1. Oracle LOOP循环控制语句

    在PL/SQL中可以使用LOOP语句对数据进行循环处理,利用该语句可以循环执行指定的语句序列.常用的LOOP循环语句包含3种形式:基本的LOOP.WHILE...LOOP和FOR...LOOP. LO ...

  2. spring mvc 用cookie和拦截器实现自动登录(/免登录)

    Cookie/Session机制详解:http://blog.csdn.net/fangaoxin/article/details/6952954 SpringMVC记住密码功能:http://blo ...

  3. 2018.10.15 NOIP训练 hyc的等比数列(数论+枚举)

    传送门 一道不错的枚举题. 显然桶排序之后瞎枚举一波. 考虑枚举首项和末项,假设首项除去一个最大的平方因子得到的结果为xxx. 那么末项一定等于xxx乘上一个平方数. 于是我们枚举首项,算出xxx然后 ...

  4. 2018.08.16 洛谷P2029 跳舞(线性dp)

    传送门 简单的线性dp" role="presentation" style="position: relative;">dpdp. 直接推一推 ...

  5. Part 6 - Class-Based Views(21-26)

    https://github.com/sibtc/django-beginners-guide/tree/v0.6-lw urlpatterns = [ views.PostUpdateView.as ...

  6. Navicat for oracle cannot load OCI DLL

    Navicat for oracle 提示 cannot load OCI DLL87,126,193 instant client package is required for basic and ...

  7. HDU 5618 Jam's problem again (cdq分治+BIT 或 树状数组套Treap)

    题意:给n个点,求每一个点的满足 x y z 都小于等于它的其他点的个数. 析:三维的,第一维直接排序就好按下标来,第二维按值来,第三维用数状数组维即可. 代码如下: cdq 分治: #pragma ...

  8. 计算服务器的pv量算法

    如何计算服务器能够承受多大的pv?   你想建设一个能承受500万PV/每天的网站吗? 500万PV是什么概念?服务器每秒要处理多少个请求才能应对?如果计算呢? PV是什么: PV是page view ...

  9. hdu 1505,1506

    1506题目 1505题目 1506: #include<stdio.h> #include<string.h> #include<iostream> using ...

  10. How To Use XDOLoader to Manage, Download and Upload Files? (文档 ID 469585.1)

    Applies to: BI Publisher (formerly XML Publisher) - Version 5.6.3 to 5.6.3 [Release 5] Information  ...