【Luogu】P1144最短路计数(BFS)
题目链接
此题使用BFS记录最短路的条数。思路如下:
因为是无权无向图,所以只要被BFS到就是最短路径。因此可以记录该点的最短路和最短路的条数:
如果点y还没被访问过,则记录dis[y],同时令ans[y]=ans[x]. 如果点y已经被访问过且当前为最短路径,则ans[y]+=ans[x]
#include<cstdio>
#include<cctype> inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} struct Edge{
int next,to;
}edge[];
int head[],num;
inline void add(int from,int to){
edge[++num]=(Edge){head[from],to};
head[from]=num;
}
int f[],h,t=;
int dis[]={-},ans[]={,};
int main(){
int n=read(),m=read();
for(int i=;i<=m;++i){
int from=read(),to=read();
if(from==to) continue;
add(from,to);
add(to,from);
}
f[]=;
while(h++<t)
for(int i=head[f[h]];i;i=edge[i].next)
if(!dis[edge[i].to]&&edge[i].to!=){
dis[edge[i].to]=dis[f[h]]+;
f[++t]=edge[i].to;
ans[edge[i].to]=ans[f[h]];
}
else if(dis[edge[i].to]==dis[f[h]]+)
ans[edge[i].to]=(ans[edge[i].to]+ans[f[h]])%;
for(int i=;i<=n;++i) printf("%d\n",ans[i]);
}
【Luogu】P1144最短路计数(BFS)的更多相关文章
- 解题报告:luogu P1144 最短路计数
题目链接:P1144 最短路计数 很简单的一道\(dfs\),然而我又跑了一遍\(dij\)和排序,时间复杂度是\(O(nlog n)\) 注意:\(1\).搜索时向\(dis[j]=dis[cur] ...
- Luogu P1144 最短路计数 【最短路】 By cellur925
题目传送门 常规的最短路计数问题:注意有重边(重边不用理,看样例),自环(读入时过滤). 另外这个无向图没有权,其实可以直接bfs做,但考虑到以后带权的情况,按spfa走了. 水题被卡了三次(嘤嘤嘤 ...
- [Luogu P1144]最短路计数
emmmm这个题看起来非常复杂,实际上仔细一分析发现到一个点最短路的个数就是所有前驱最短路个数之和.如果在图上表示也就是以1为根的bfs搜索树,一个点的最短路个数等于每一个能够向它扩展的所有点的最短路 ...
- 【luogu P1144 最短路计数】 题解
题目链接:https://www.luogu.org/problemnew/show/P1144 #include <iostream> #include <cstdio> # ...
- P1144 最短路计数
P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...
- 洛谷——P1144 最短路计数
P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...
- 洛谷 P1144 最短路计数 解题报告
P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...
- 洛谷 P1144 最短路计数 题解
P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 输入格式 第一行包含\(2\)个正 ...
- 洛谷P1144 最短路计数 及其引申思考
图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...
- P1144 最短路计数 题解 最短路应用题
题目链接:https://www.luogu.org/problem/P1144 其实这道题目是最短路的变形题,因为数据范围 \(N \le 10^6, M \le 2 \times 10^6\) , ...
随机推荐
- DrawerLayout Demo
源码下载:http://download.csdn.net/detail/bx276626237/8882763
- CSS布局之-高度自适应
何为高度自适应? 高度自适应就是高度能跟随浏览器窗口的大小改变而改变,典型的运用在一些后台界面中上面一栏高度固定用作菜单栏或导航栏,下面一栏高度自适应用于显示内容.高度自适应不像宽度自适应那样简单,在 ...
- 在一个工程中同时使用Swift和Objective-C
Swift 与 Objective-C 的兼容能力使你可以在同一个工程中同时使用两种语言.你可以用这种叫做 mix and match 的特性来开发基于混合语言的应用,可以用 Swfit 的最新特性实 ...
- LVM逻辑分区的优缺点与步骤
一.LVM简介 1. 什么是LVM? LVM是 Logical Volume Manager(逻辑卷管理)的简写 2. 为什么使用LVM? LVM通常用于装备大量磁盘的系统,但它同样适于仅有一.两块硬 ...
- 怎么在webstorm中设置代码模板
大家都知道webstorm对程序员来说是一个很好用的IDE.我们输入几个关键字,webstorm就会给出提示,大大提高了我们的开发效率,可有时候webstorm的默认设置不能满足我们的个性化代码模板的 ...
- Bootstrap历练实例:基本输入框组
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- [POJ] 1135 Domino Effect
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12147 Accepted: 3046 Descri ...
- MariaDB数据库(三)
1. 基本查询 查询基本使用包括:条件.排序.聚合函数.分组和分页. 实例详解查询 1> 创建students表用作实验 MariaDB [testdb]> drop table stud ...
- Springboot(一)-IDEA搭建springboot项目(demo)
jdk版本:1.8.0_162 1.打开IDEA-file-new-project-Spring Initializer,JDK和URL选默认,next (这一步如果是不能联网的话,可以选择直接创建m ...
- python爬虫基础06-常见加密算法
Python与常见加密方式 前言 数据加密与解密通常是为了保证数据在传输过程中的安全性,自古以来就一直存在,古代主要应用在战争领域,战争中会有很多情报信息要传递,这些重要的信息都会经过加密,在发送到对 ...