题目链接 
此题使用BFS记录最短路的条数。思路如下:
因为是无权无向图,所以只要被BFS到就是最短路径。因此可以记录该点的最短路和最短路的条数:
如果点y还没被访问过,则记录dis[y],同时令ans[y]=ans[x]. 如果点y已经被访问过且当前为最短路径,则ans[y]+=ans[x]

#include<cstdio>
#include<cctype> inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} struct Edge{
int next,to;
}edge[];
int head[],num;
inline void add(int from,int to){
edge[++num]=(Edge){head[from],to};
head[from]=num;
}
int f[],h,t=;
int dis[]={-},ans[]={,};
int main(){
int n=read(),m=read();
for(int i=;i<=m;++i){
int from=read(),to=read();
if(from==to) continue;
add(from,to);
add(to,from);
}
f[]=;
while(h++<t)
for(int i=head[f[h]];i;i=edge[i].next)
if(!dis[edge[i].to]&&edge[i].to!=){
dis[edge[i].to]=dis[f[h]]+;
f[++t]=edge[i].to;
ans[edge[i].to]=ans[f[h]];
}
else if(dis[edge[i].to]==dis[f[h]]+)
ans[edge[i].to]=(ans[edge[i].to]+ans[f[h]])%;
for(int i=;i<=n;++i) printf("%d\n",ans[i]);
}

【Luogu】P1144最短路计数(BFS)的更多相关文章

  1. 解题报告:luogu P1144 最短路计数

    题目链接:P1144 最短路计数 很简单的一道\(dfs\),然而我又跑了一遍\(dij\)和排序,时间复杂度是\(O(nlog n)\) 注意:\(1\).搜索时向\(dis[j]=dis[cur] ...

  2. Luogu P1144 最短路计数 【最短路】 By cellur925

    题目传送门 常规的最短路计数问题:注意有重边(重边不用理,看样例),自环(读入时过滤). 另外这个无向图没有权,其实可以直接bfs做,但考虑到以后带权的情况,按spfa走了. 水题被卡了三次(嘤嘤嘤 ...

  3. [Luogu P1144]最短路计数

    emmmm这个题看起来非常复杂,实际上仔细一分析发现到一个点最短路的个数就是所有前驱最短路个数之和.如果在图上表示也就是以1为根的bfs搜索树,一个点的最短路个数等于每一个能够向它扩展的所有点的最短路 ...

  4. 【luogu P1144 最短路计数】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1144 #include <iostream> #include <cstdio> # ...

  5. P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  6. 洛谷——P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  7. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  8. 洛谷 P1144 最短路计数 题解

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 输入格式 第一行包含\(2\)个正 ...

  9. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

  10. P1144 最短路计数 题解 最短路应用题

    题目链接:https://www.luogu.org/problem/P1144 其实这道题目是最短路的变形题,因为数据范围 \(N \le 10^6, M \le 2 \times 10^6\) , ...

随机推荐

  1. iOS操作系统的层次结构

    iOS操作系统4层结构,如下表 可触摸层 Cocoa Touch layer 媒体层 Media layer 核心服务层 Core Services layer 核心操作系统层 Core OS lay ...

  2. 新萝卜家园GHOST WIN7系统3专业装机版

    系统来自系统妈:http://www.xitongma.com/ 系统概述 萝卜家园GHOST win7 64位装机旗舰版加快“网上邻居”共享速度:取消不需要的网络服务组件,系统支持Windows安装 ...

  3. (十二)maven之nexus仓库的基本用法

    nexus仓库的基本用法 ① 启动nexus. 上一章有提到:https://www.cnblogs.com/NYfor2018/p/9079068.html ② 访问http://localhost ...

  4. leetcode 4.两个排序数组的中位数

    题目: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nums ...

  5. 基于Python的Web应用开发实战——3 模板

    要想开发出易于维护的程序,关键在于编写形式简洁且结构良好的代码. 当目前为止,你看到的示例都太简单,无法说明这一点,但Flask视图函数的两个完全独立的作用却被融合在了一起,这就产生了一个问题. 视图 ...

  6. spring-security中的csrf防御机制(跨域请求伪造)

    什么是csrf? csrf又称跨域请求伪造,攻击方通过伪造用户请求访问受信任站点.CSRF这种攻击方式在2000年已经被国外的安全人员提出,但在国内,直到06年才开始被关注,08年,国内外的多个大型社 ...

  7. Navicat 复制多条数据

  8. [BZOJ3307]:雨天的尾巴(LCA+树上差分+权值线段树)

    题目传送门 题目描述: N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入格式: 第一 ...

  9. common-fileupload上传文件

    文件上传在web应用中非常普遍,要在jsp环境中实现文件上传功能是非常容易的,因为网上有许多用java开发的文件上传组件,本文以commons-fileupload组件为例,为jsp应用添加文件上传功 ...

  10. ios之UITextView

    我们计划创建UITextView,实现UITextViewDelegate协议方法,使用NSLog检查该方法何时被调用.我们还会接触到如何在TextView中限制字符的数量,以及如何使用return键 ...