题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025

分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种数

考虑一个Lcm=p1^a1 * p2^a2 * …… pk^ak 是否可能出现

WJMZBMR提出,能出现的充要条件是p1^a1+p2^a2+……+pk^ak<=n

证明:

先证必要性:

  ∵p1^a1 p2^a2 …… pk^ak 这k个数的最小公倍数正好是lcm 且 k<n (n以内的质数的个数肯定比n小啊)

  ∴可以把n分解成n=p1^a1 + p2^a2 …… +pk^ak + 1 + ……+1 (n-k个1),1对最小公倍数的大小lcm无影响

  ∴就存在这样的分解方案使得lcm能出现

再证充分性:

  假设p1^a1+p2^a2+……+pk^ak>n

  看个例子:27=12+8+6+1=2*2*3+2*2*2+2*3+1

  他们的lcm=24=1^1 * 2^3 * 3^1

  这个lcm如何求出来的呢?我们看看2的指数如何定:12分解质因数有2个2,8分解质因数有3个2,6分解质因数有1个2,所以lcm中2的指数就是max{2,3,1}=3,  以3为底数的指数也是如此求法。也就是说lcm里的每个质数对应的指数是对n分解的每一项中该质数个数的最大值!!!!

  那么也就说对n的拆分里面,一定至少有一项含因子p1^a1,即对n的拆分里,一定至少有一项是p1^a1的倍数,同理也至少有一项分别是p2^a2 p3^a3 ……的  倍数,不妨设是b1*p1^a1 b2*p2^a2 ……

  那么现在p1^a1+p2^a2+……+pk^ak>n

  b1*p1^a1+b2*p2^a2+……+bk*pk^ak>n

  注意bi*pi^ai是n的拆分中的一项,所以b1*p1^a1+b2*p2^a2+……+bk*pk^ak=n

  很明显上面两个式子冲突了

  于是假设不成立,一定有p1^a1+p2^a2+……+pk^ak<=n

综上所述,原问题等价于求满足p1^a1 + p2^a2 +…… pk^ak<=n的数列(a1,a2,...,ak)一共有多少个

这显然就是背包问题了……GG

这种神题只能欣赏了Orz……

[bzoj 1025][SCOI2009]游戏(DP)的更多相关文章

  1. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  2. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  3. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  4. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  5. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  6. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  7. bzoj 1025: [SCOI2009]游戏【数学+dp】

    很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数 有结论若p1^a1+p2^a2+...+pm^am<=n,则ans=p1^a1p2^a2..*pm^am是n的一个可行答案.( ...

  8. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  9. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. 简单几何(水)BestCoder Round #50 (div.2) 1002 Run

    题目传送门 /* 好吧,我不是地球人,这题只要判断正方形就行了,正三角形和正五边形和正六边形都不可能(点是整数). 但是,如果不是整数,那么该怎么做呢?是否就此开启计算几何专题了呢 */ /***** ...

  2. 贪心 HDOJ 5355 Cake

    好的,数据加强了,wa了 题目传送门 /* 题意:1到n分成m组,每组和相等 贪心:先判断明显不符合的情况,否则肯定有解(可能数据弱?).贪心的思路是按照当前的最大值来取 如果最大值大于所需要的数字, ...

  3. Traceback (most recent call last): File "setup.py", line 22, in <module> execfile(join(CURDIR, 'src', 'SSHLibrary', 'version.py')) NameError: name 'execfile' is not defined

    在python3环境下安装robotframework-SSHLibraray报错: Traceback (most recent call last): File "setup.py&qu ...

  4. Javascript对象基础讲解

    1.Object对象详解 javascript 里最基本的数据类型是对象. avaScript里的对象其实是一个无序的属性集合,属性又是一个个的名-值对. 除了字符串,数字,true,false,nu ...

  5. EditText(1)EditText的类型和回车键的行为

    1,常见类型 <EditText android:id="@+id/email_address" android:layout_width="fill_parent ...

  6. JDK API文档下载

    java SE 8 API文档:http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-21331 ...

  7. web测试--登录界面怎么测?

    具体需求: 有一个登陆页面, 上面有2个textbox, 一个提交按钮.  请针对这个页面设计30个以上的测试用例. 此题的考察目的: 面试者是否熟悉各种测试方法,是否有丰富的Web测试经验, 是否了 ...

  8. Flask Web 发送邮件单文件

    import os from flask import Flask, render_template, session, redirect, url_for from flask_script imp ...

  9. U盘安装完美的WIN7操作系统教程

    准备工作 首先备份或者在官网下载好您机器的驱动,否则完成后可能无法正常使用 ①一个有win7或者XP系统的电脑(制作启动盘用) ②一个4G以上的U盘 ③win7&win8系统包(请到官网下载或 ...

  10. java生成excel

    package test.poi; import java.io.File; import java.io.FileOutputStream; import java.io.OutputStream; ...