题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025

分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种数

考虑一个Lcm=p1^a1 * p2^a2 * …… pk^ak 是否可能出现

WJMZBMR提出,能出现的充要条件是p1^a1+p2^a2+……+pk^ak<=n

证明:

先证必要性:

  ∵p1^a1 p2^a2 …… pk^ak 这k个数的最小公倍数正好是lcm 且 k<n (n以内的质数的个数肯定比n小啊)

  ∴可以把n分解成n=p1^a1 + p2^a2 …… +pk^ak + 1 + ……+1 (n-k个1),1对最小公倍数的大小lcm无影响

  ∴就存在这样的分解方案使得lcm能出现

再证充分性:

  假设p1^a1+p2^a2+……+pk^ak>n

  看个例子:27=12+8+6+1=2*2*3+2*2*2+2*3+1

  他们的lcm=24=1^1 * 2^3 * 3^1

  这个lcm如何求出来的呢?我们看看2的指数如何定:12分解质因数有2个2,8分解质因数有3个2,6分解质因数有1个2,所以lcm中2的指数就是max{2,3,1}=3,  以3为底数的指数也是如此求法。也就是说lcm里的每个质数对应的指数是对n分解的每一项中该质数个数的最大值!!!!

  那么也就说对n的拆分里面,一定至少有一项含因子p1^a1,即对n的拆分里,一定至少有一项是p1^a1的倍数,同理也至少有一项分别是p2^a2 p3^a3 ……的  倍数,不妨设是b1*p1^a1 b2*p2^a2 ……

  那么现在p1^a1+p2^a2+……+pk^ak>n

  b1*p1^a1+b2*p2^a2+……+bk*pk^ak>n

  注意bi*pi^ai是n的拆分中的一项,所以b1*p1^a1+b2*p2^a2+……+bk*pk^ak=n

  很明显上面两个式子冲突了

  于是假设不成立,一定有p1^a1+p2^a2+……+pk^ak<=n

综上所述,原问题等价于求满足p1^a1 + p2^a2 +…… pk^ak<=n的数列(a1,a2,...,ak)一共有多少个

这显然就是背包问题了……GG

这种神题只能欣赏了Orz……

[bzoj 1025][SCOI2009]游戏(DP)的更多相关文章

  1. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  2. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  3. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  4. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  5. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  6. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  7. bzoj 1025: [SCOI2009]游戏【数学+dp】

    很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数 有结论若p1^a1+p2^a2+...+pm^am<=n,则ans=p1^a1p2^a2..*pm^am是n的一个可行答案.( ...

  8. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  9. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. JS 实现PDF文件打印

    function PdfPrint() {        bdhtml = window.document.body.innerHTML;        sprnstr = "<!-- ...

  2. python获取主机名和用户名

    import socketimport getpassuser_name = getpass.getuser() # 获取当前用户名hostname = socket.gethostname() # ...

  3. 303 Range Sum Query - Immutable 区域和检索 - 不可变

    给定一个数组,求出数组从索引 i 到 j  (i ≤ j) 范围内元素的总和,包含 i,  j 两点.例如:给定nums = [-2, 0, 3, -5, 2, -1],求和函数为sumRange() ...

  4. 在dataGridView空间中添加数据

    //查询信息sql语句 string sql = "select studentName,addres from student"; SqlDataAdapter adapter ...

  5. 向listview控件中添加数据库数据

    //连接字符串 string str = "Data Source=.;Initial Catalog=mu;User ID=sa;Password=111"; //创建数据库连接 ...

  6. SQL数据库,增加查询修改以及防sql写入攻击

    SQL添加信息 SQL查询信息 SQL修改信息 SQL语句写入攻击: 普通语句添加信息 sql写入语句攻击: 解决方法:分开传送语句与参数关键:@

  7. 专题四:自定义Web浏览器

    前言: 前一个专题介绍了自定义的Web服务器,然而向Web服务器发出请求的正是本专题要介绍的Web浏览器,本专题通过简单自定义一个Web浏览器来简单介绍浏览器的工作原理,以及帮助一些初学者揭开浏览器这 ...

  8. js重写alert()弹窗

    //重写alertwindow.alert = function(str){ var alertFram = document.getElementById('alertFram'); var shi ...

  9. Laravel5.1学习笔记21 EloquentORM 集合

    Eloquent: Collections Introduction Available Methods Custom Collections Introduction All multi-resul ...

  10. "HybridDB · 性能优化 · Count Distinct的几种实现方式” 读后感

    原文地址:HybridDB · 性能优化 · Count Distinct的几种实现方式 HybridDB是阿里基于GreenPlum开发的一款MPP分析性数据库,而GreenPlum本身基于Post ...