题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025

分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种数

考虑一个Lcm=p1^a1 * p2^a2 * …… pk^ak 是否可能出现

WJMZBMR提出,能出现的充要条件是p1^a1+p2^a2+……+pk^ak<=n

证明:

先证必要性:

  ∵p1^a1 p2^a2 …… pk^ak 这k个数的最小公倍数正好是lcm 且 k<n (n以内的质数的个数肯定比n小啊)

  ∴可以把n分解成n=p1^a1 + p2^a2 …… +pk^ak + 1 + ……+1 (n-k个1),1对最小公倍数的大小lcm无影响

  ∴就存在这样的分解方案使得lcm能出现

再证充分性:

  假设p1^a1+p2^a2+……+pk^ak>n

  看个例子:27=12+8+6+1=2*2*3+2*2*2+2*3+1

  他们的lcm=24=1^1 * 2^3 * 3^1

  这个lcm如何求出来的呢?我们看看2的指数如何定:12分解质因数有2个2,8分解质因数有3个2,6分解质因数有1个2,所以lcm中2的指数就是max{2,3,1}=3,  以3为底数的指数也是如此求法。也就是说lcm里的每个质数对应的指数是对n分解的每一项中该质数个数的最大值!!!!

  那么也就说对n的拆分里面,一定至少有一项含因子p1^a1,即对n的拆分里,一定至少有一项是p1^a1的倍数,同理也至少有一项分别是p2^a2 p3^a3 ……的  倍数,不妨设是b1*p1^a1 b2*p2^a2 ……

  那么现在p1^a1+p2^a2+……+pk^ak>n

  b1*p1^a1+b2*p2^a2+……+bk*pk^ak>n

  注意bi*pi^ai是n的拆分中的一项,所以b1*p1^a1+b2*p2^a2+……+bk*pk^ak=n

  很明显上面两个式子冲突了

  于是假设不成立,一定有p1^a1+p2^a2+……+pk^ak<=n

综上所述,原问题等价于求满足p1^a1 + p2^a2 +…… pk^ak<=n的数列(a1,a2,...,ak)一共有多少个

这显然就是背包问题了……GG

这种神题只能欣赏了Orz……

[bzoj 1025][SCOI2009]游戏(DP)的更多相关文章

  1. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  2. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  3. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  4. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  5. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  6. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  7. bzoj 1025: [SCOI2009]游戏【数学+dp】

    很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数 有结论若p1^a1+p2^a2+...+pm^am<=n,则ans=p1^a1p2^a2..*pm^am是n的一个可行答案.( ...

  8. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  9. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. scala学习笔记2:面向对象编程部分基础

    以下主要记录的是看完scala in programming这本书Functional Objects(第六章)后的要点总结. 1,程序中可变对象(var)和不可变对象(val)使用的权衡问题 不可变 ...

  2. JavaScript(十四)经典的Ajax

    (function(){ //唯一向外暴露一个顶层变量 var myajax = window.myajax = {}; //作者.版本号信息 myajax.author = "maxwel ...

  3. Mybatis 在 insert 之后想获取自增的主键 id,但却总是返回1

    记录一次傻逼的问题, 自己把自己蠢哭:Mybatis 在 insert 之后想获取自增的主键 id,但却总是返回1 错误说明: 返回的1是影响的行数,并不是自增的主键id: 想要获取自增主键id,需要 ...

  4. IBatis的分页研究

    IBatis的分页研究 博客分类: Ibatis学习   摘自: http://cpu.iteye.com/blog/311395 yangtingkun   Oracle分页查询语句 ibaits. ...

  5. HTML——meta

    http://www.cnblogs.com/jr1993/p/4542862.html

  6. Java 基础入门随笔(9) JavaSE版——文档注释

    上节中写了一些static变量以及静态的方法的定义使用以及与非静态的差别,这节补充下: 如果在一个类中所有方法都为静态的,且无成员变量,这时候需要对对应的类进行限制该类无法创建对象,具体操作如下: p ...

  7. NSAllowsArbitraryLoadsInWebContent NSAllowsArbitraryLoads

    By specifying NSAllowsArbitraryLoadsInWebContent, you are overriding NSAllowsArbitraryLoads on iOS 1 ...

  8. [Linux]正则表达式和grep使用【转载】

    [Linux]正则表达式和grep使用 2018年12月05日 23:45:54 祥知道 阅读数 78 标签: 正则表达式grepLinuxegrep 更多 个人分类: Linux 所属专栏:  Li ...

  9. acm相关(纯转载)

    我觉得很好的文章,之所以放随笔是为了让大家看到这些优秀的博文 acm如何起步 acm重点题型 动态规划题目总结 背包九讲阅读网站

  10. Cyclic Nacklace HDU - 3746 (kmp next数组应用)

    题目大意 给出字符串,寻找最小要补全的字符个数,使得字符串是两次的循环 解法 通过寻找规律,我们又发现了len-next[len]又派上了用场 ①如果next[len]是0,说明最大前缀后缀和为0,那 ...