能量采集(bzoj 2005)
Description
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
5 4
【样例输入2】
3 4
Sample Output
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
/*
考虑每个点对于答案的贡献,设点为(x,y),容易得出它对答案的贡献为gcd(x,y)*2-1。
重点在于求出ΣΣgcd(i,j)=Σphi(i)*(n/i)*(m/i),然后用除法分块。
*/
#include<cstdio>
#include<iostream>
#define N 100010
#define lon long long
using namespace std;
int mark[N],prime[N],phi[N],n,m,num;
lon sum[N],ans;
void get_prime(){
phi[]=;
for(int i=;i<N;i++){
if(!mark[i]) prime[++num]=i,phi[i]=i-;
for(int j=;j<=num&&i*prime[j]<N;j++){
mark[i*prime[j]]=;
phi[i*prime[j]]=phi[i]*(prime[j]-);
if(i%prime[j]==){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for(int i=;i<N;i++) sum[i]=sum[i-]+(lon)phi[i];
}
int main(){
get_prime();
scanf("%d%d",&n,&m);
int last;
for(int i=;i<=min(n,m);i=last+){
last=min(n/(n/i),m/(m/i));
ans+=(sum[last]-sum[i-])*(lon)(n/i)*(lon)(m/i);
}
cout<<ans*-(lon)n*m;
return ;
}
能量采集(bzoj 2005)的更多相关文章
- 2005: [Noi2010]能量采集 - BZOJ
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ 2005: [Noi2010]能量采集
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 3312 Solved: 1971[Submit][Statu ...
- BZOJ 2005 能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )
一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
- 【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么 ...
- bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...
- 【BZOJ】【2005】【NOI2010】能量采集
欧拉函数 玛雅,我应该先看看JZP的论文的……贾志鹏<线性筛法与积性函数>例题一 这题的做法……仔细想下可以得到:$ans=2*\sum_{a=1}^n\sum_{b=1}^m gcd(a ...
- 【BZOJ 2005】[Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)
能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...
随机推荐
- 第十二篇、OC_仿淘宝商品详情页的翻页
// // GFBProductViewController.m // elmsc // // Created by MAC on 2016/11/26. // Copyright © 2016年 G ...
- MySQL DBA从小白到大神实战
MySQL5.6 For CentOS 6.6 源码编译安装 o1.关闭防火墙o2.配置sysctl.confo3.检查操作系统上是否安装了MySQLo4.下载mysql源码包o5.添加用户和组o6. ...
- 基于django的个人博客网站建立(一)
基于django的个人博客网站建立(一) 前言 网站效果可点击这里访问 之前基于hexo和github page搭建过一个博客网页,后来由于换了个系统,感觉弄的有点麻烦也就没有再去管它了,最近偶然从网 ...
- Scrapy-redis分布式爬虫爬取豆瓣电影详情页
平时爬虫一般都使用Scrapy框架,通常都是在一台机器上跑,爬取速度也不能达到预期效果,数据量小,而且很容易就会被封禁IP或者账号,这时候可以使用代理IP或者登录方式爬,然而代理IP很多时候都很鸡肋, ...
- relu函数是否存在梯度消失问题以及relu函数的死亡节点问题
relu函数是否存在梯度消失问题以及relu函数的死亡节点问题 存在,在小于的时候,激活函数梯度为零,梯度消失,神经元不更新,变成了死亡节点. 出现这个原因可能是因为学习率太大,导致w更新巨大,使得输 ...
- 第5模块闯关CSS练习题
1.列举你知道的css选择器? 说道css选择器,大家都知道有许多种,但是真要你去掰着手指头数一数的话,你可能需要数几分钟.其实这么多选择器,完全可以分为两类: 标签选择器(*是特殊情况),可但标签, ...
- LyaoutParameters作用
当你想要动态生成布局的时候,那么就要用到这个参数了.因为那时候你在布局文件里面写的width和height都不起作用了. LinearLayout linearLayout = (LinearLayo ...
- TCP/IP网络编程之优于select的epoll(一)
epoll的理解及应用 select复用方法由来已久,因此,利用该技术后,无论如何优化程序性能也无法同时接入上百个客户端.这种select方式并不适合以web服务端开发为主流的现代开发环境,所以要学习 ...
- 【面试】一篇文章帮你彻底搞清楚“I/O多路复用”和“异步I/O”的前世今生
曾经的VIP服务 在网络的初期,网民很少,服务器完全无压力,那时的技术也没有现在先进,通常用一个线程来全程跟踪处理一个请求.因为这样最简单. 其实代码实现大家都知道,就是服务器上有个ServerSoc ...
- 【3Sum】cpp
题目: Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find al ...