51nod 1301 集合异或和(DP)
因为当\(A<B\)时,会存在在二进制下的一位,满足这一位B的这一位是\(1\),\(A\)的这一位是\(0\).
我们枚举最大的这一位。设为\(x\)吧。
设计状态。\(dp[i][j][1/0]\)代表考虑了前i个数,异或和为j的情况下\(B\)的第\(x\)位为\(1\)或\(0\)有多少种情况。
然后随便转移一下,再随便统计答案一下就好了。
如果不知道如何转移,就看代码吧。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int mod=1e9+7;
int n,m,mx,dp[2100][2100][2],ans;
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
n=read();m=read();
mx=max(n,m);
int now=0;
for(int i=1;i<=mx;i<<=1){
now++;
memset(dp,0,sizeof(dp));
dp[0][0][0]=1;
for(int j=1;j<=mx;j++){
for(int k=0;k<=2047;k++){
if(j<=m){
dp[j][k][0]=(dp[j][k][0]+dp[j-1][k^j][0^((j&i)>>(now-1))])%mod;
dp[j][k][1]=(dp[j][k][1]+dp[j-1][k^j][1^((j&i)>>(now-1))])%mod;
}
if(j<=n){
dp[j][k][0]=(dp[j][k][0]+dp[j-1][k^j][0])%mod;
dp[j][k][1]=(dp[j][k][1]+dp[j-1][k^j][1])%mod;
}
dp[j][k][0]=(dp[j][k][0]+dp[j-1][k][0])%mod;
dp[j][k][1]=(dp[j][k][1]+dp[j-1][k][1])%mod;
}
}
for(int j=i;j<=min(i*2-1,2047);j++)ans=(ans+dp[mx][j][1])%mod;
}
printf("%d",ans);
return 0;
}
51nod 1301 集合异或和(DP)的更多相关文章
- [51Nod 1301] 集合异或和 (dp)
传送门 Solution 一道比较好的dp题 想了半天组合数QAQ 首先要知道的是 A<B一定是B有一位是1且A的这位是0且前面都相等 那么肯定是要枚举这一位在哪里然后求出方案数 方案数考虑类似 ...
- 51nod 1301 集合异或和——异或dp
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1301 好题!看了TJ才会. 因为是不可重集合,所以当然有前 i 个 ...
- 51Nod 1301 集合异或和 —— 异或DP
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1301 参考博客:https://blog.csdn.net/qq_ ...
- [51nod] 1301 集合异或和
考虑不限制xor{Y}>xor{X} 考虑n=m的情况,每个数i∈[1,n]可以被分配到X集合或Y集合,或不分配 设f[S]表示{X} xor {Y} == S的方案数 有f[S]+=2*f[S ...
- 51nod 1293 球与切换器 | DP
51nod 1293 球与切换器 | DP 题面 有N行M列的正方形盒子.每个盒子有三种状态0, -1, +1.球从盒子上边或左边进入盒子,从下边或右边离开盒子.规则: 如果盒子的模式是-1,则进入它 ...
- 51nod 1412 AVL树的种类(dp)
题目链接:51nod 1412 AVL树的种类 开始做的时候把深度开得过小了结果一直WA,是我天真了.. #include<cstdio> #include<cstring> ...
- 51nod 1051 最大子矩阵和(dp)
题目链接:51nod 1051 最大子矩阵和 实质是把最大子段和扩展到二维.读题注意m,n... #include<cstdio> #include<cstring> #inc ...
- hihocoder #1301 : 筑地市场 数位dp+二分
题目链接: http://hihocoder.com/problemset/problem/1301?sid=804672 题解: 二分答案,每次判断用数位dp做. #include<iostr ...
- 51Nod 1352 集合计数(扩展欧几里德)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1352 题目大意: 给出N个固定集合{1,N},{2,N-1} ...
随机推荐
- [2] day 02
1. df.memory_usage()将返回每列占用多少 要包含索引,请传递index=True所以要获得整体内存消耗: 2. numpy.iinfo 3. shift函数 https://blog ...
- Ubuntu环境搭建svn服务器
记录一次使用Ubuntu环境搭建svn服务器的详细步骤 一.查看是否已经安装svn 命令:svn如果显示以下信息,说明已安装 二.卸载已安装的svn 命令:sudo apt-get remove ...
- 【hiho一下 第三周】KMP算法
[题目链接]:http://hihocoder.com/problemset/problem/1015 [题意] [题解] 把f数组,len1,len2数组一开始全都定义成char型 这酸爽. [Nu ...
- BindingResult不能获取错误对象
BindingResult不能获取错误对象,代码如下: @RequestMapping(value = "/login") public String error4( Model ...
- 使用githug游戏提高git水平
- 今天又犯了Java/Scala里面substring的错误
每次都误以为是 substring(startIndex, length) 其实是 substring(startIndex, endIndex) 嗯 Java/Scala 跟 C++ 是不一样的.
- POJ 2132
我早上调了一个早上,下午才发现把e=edge[e].next写成edge[e].next了... 这题直接DFS,一个剪枝是,当当前的最大质因数是最小公倍数的因数时,不用搜索 #include < ...
- spring cloud 中Actuator不显示更多信息的处理方式
spring cloud 中Actuator不显示更多信息的处理方式 直接咨询了周大立,他说 management.security.enabled = false 就可以了: 学习了:http:// ...
- A server is already running. Check tmp/pids/server.pid.
A server is already running. Check tmp/pids/server.pid. 把server.pid删除: 学习了: http://stackoverflow.co ...
- Unity3D_c#脚本注意要点
1. Inherit from MonoBehaviour 继承自MonoBehaviour All behaviour scripts must inherit from MonoBehaviour ...