Spark1.4发布,支持了窗口分析函数(window functions)。
在离线平台中,90%以上的离线分析任务都是使用Hive实现,其中必然会使用很多窗口分析函数,如果SparkSQL支持窗口分析函数,
那么对于后面Hive向SparkSQL中的迁移的工作量会大大降低,使用方式如下:

1、初始化数据

创建表

create table window_test2 (url string, rate int) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

准备测试数据
url1,12
url2,11
url1,23
url2,25
url1,58
url3,11
url2,25
url3,58
url2,11

加载数据:
load data local inpath '/opt/bin/short_opt/windows2.data' overwrite into table window_test2 ;

2、窗口函数测试
查询所有数据

select * from window_test2;
+-------+-------+
|  url  | rate  |
+-------+-------+
| url1  | 12    |
| url2  | 11    |
| url1  | 23    |
| url2  | 25    |
| url1  | 58    |
| url3  | 11    |
| url2  | 25    |
| url3  | 58    |
| url2  | 11    |
+-------+-------+

分组排序:
select url,rate,row_number() over(partition by url order by rate desc) as r from window_test2;
+-------+-------+----+
|  url  | rate  | r  |
+-------+-------+----+
| url1  | 58    | 1  |
| url1  | 23    | 2  |
| url1  | 12    | 3  |
| url2  | 25    | 1  |
| url2  | 25    | 2  |
| url2  | 11    | 3  |
| url2  | 11    | 4  |
| url3  | 58    | 1  |
| url3  | 11    | 2  |
+-------+-------+----+

分组统计sum
select url,rate,sum(rate) over(partition by url ) as r from window_test2;
+-------+-------+-----+
|  url  | rate  |  r  |
+-------+-------+-----+
| url1  | 12    | 93  |
| url1  | 23    | 93  |
| url1  | 58    | 93  |
| url2  | 11    | 72  |
| url2  | 25    | 72  |
| url2  | 25    | 72  |
| url2  | 11    | 72  |
| url3  | 11    | 69  |
| url3  | 58    | 69  |
+-------+-------+-----+

分组统计avg
select url,rate,avg(rate) over(partition by url ) as r from window_test2;
+-------+-------+-------+
|  url  | rate  |   r   |
+-------+-------+-------+
| url1  | 12    | 31.0  |
| url1  | 23    | 31.0  |
| url1  | 58    | 31.0  |
| url2  | 25    | 18.0  |
| url2  | 11    | 18.0  |
| url2  | 11    | 18.0  |
| url2  | 25    | 18.0  |
| url3  | 11    | 34.5  |
| url3  | 58    | 34.5  |
+-------+-------+-------+

分组统计count
select url,rate,count(rate) over(partition by url ) as r from window_test2;
+-------+-------+----+
|  url  | rate  | r  |
+-------+-------+----+
| url1  | 12    | 3  |
| url1  | 23    | 3  |
| url1  | 58    | 3  |
| url2  | 11    | 4  |
| url2  | 25    | 4  |
| url2  | 25    | 4  |
| url2  | 11    | 4  |
| url3  | 11    | 2  |
| url3  | 58    | 2  |
+-------+-------+----+

分组lag
select url,rate,lag(rate) over(partition by url ) as r from window_test2;
+-------+-------+-------+
|  url  | rate  |   r   |
+-------+-------+-------+
| url1  | 12    | NULL  |
| url1  | 23    | 12    |
| url1  | 58    | 23    |
| url2  | 25    | NULL  |
| url2  | 11    | 25    |
| url2  | 11    | 11    |
| url2  | 25    | 11    |
| url3  | 11    | NULL  |
| url3  | 58    | 11    |
+-------+-------+-------+

3、spark-1.4以后,支持所有的窗口函数了,有利用于hive作业向spark-sql来转换。
---------------------

原文:https://blog.csdn.net/kwu_ganymede/article/details/50457528

 

下面的博客汇总中,例子都很清晰,感谢博主:

 

分析窗口函数汇总:

part1: SUM,AVG,MIN,MAX 

http://lxw1234.com/archives/2015/04/176.htm

part2: NTILE,ROW_NUMBER,RANK,DENSE_RANK 

http://lxw1234.com/archives/2015/04/181.htm

part3: CUME_DIST,PERCENT_RANK

http://lxw1234.com/archives/2015/04/185.htm

part4:LAG,LEAD,FIRST_VALUE,LAST_VALUE

http://lxw1234.com/archives/2015/04/190.htm

part5: GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

http://lxw1234.com/archives/2015/04/193.htm

 
序列函数不支持WINDOW子句. 

http://lxw1234.com/archives/tag/hive-window-functions

hive Spark SQL分析窗口函数的更多相关文章

  1. 【慕课网实战】八、以慕课网日志分析为例 进入大数据 Spark SQL 的世界

    用户行为日志:用户每次访问网站时所有的行为数据(访问.浏览.搜索.点击...)     用户行为轨迹.流量日志   日志数据内容: 1)访问的系统属性: 操作系统.浏览器等等 2)访问特征:点击的ur ...

  2. Spark SQL官方文档阅读--待完善

    1,DataFrame是一个将数据格式化为列形式的分布式容器,类似于一个关系型数据库表. 编程入口:SQLContext 2,SQLContext由SparkContext对象创建 也可创建一个功能更 ...

  3. Spark SQL大数据处理并写入Elasticsearch

    SparkSQL(Spark用于处理结构化数据的模块) 通过SparkSQL导入的数据可以来自MySQL数据库.Json数据.Csv数据等,通过load这些数据可以对其做一系列计算 下面通过程序代码来 ...

  4. spark SQL概述

    Spark SQL是什么? 何为结构化数据 sparkSQL与spark Core的关系 Spark SQL的前世今生:由Shark发展而来 Spark SQL的前世今生:可以追溯到Hive Spar ...

  5. Spark基础:(六)Spark SQL

    1.相关介绍 Datasets:一个 Dataset 是一个分布式的数据集合 Dataset 是在 Spark 1.6 中被添加的新接口, 它提供了 RDD 的优点(强类型化, 能够使用强大的 lam ...

  6. Hive、Spark SQL、Impala比较

    Hive.Spark SQL.Impala比较        Hive.Spark SQL和Impala三种分布式SQL查询引擎都是SQL-on-Hadoop解决方案,但又各有特点.前面已经讨论了Hi ...

  7. Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query

    /** Spark SQL源代码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache ...

  8. Spark SQL Catalyst源代码分析之TreeNode Library

    /** Spark SQL源代码分析系列文章*/ 前几篇文章介绍了Spark SQL的Catalyst的核心执行流程.SqlParser,和Analyzer,本来打算直接写Optimizer的,可是发 ...

  9. Spark SQL源代码分析之核心流程

    /** Spark SQL源代码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几 ...

随机推荐

  1. Codeforces 1105C Ayoub and Lost Array (计数DP)

    <题目链接> 题目大意: 有一个长度为 n 的数列的未知数列,数列的每一个数的值都在区间 [l,r]  的范围内.现在问你能够构成多少个这样的数组,使得数组内的所有数的和能够被 3 整除. ...

  2. 数据库相关--net start mysql 服务无法启动(win7系统)解决

    系统:win7 旗舰版 64位 MySQL:8.0.11 家里台式机上不久之前安装了MySQL,一段时间没碰过后,突然启动不了了(我有一头小毛驴,我从来也不骑,有一天我心血来潮骑它去赶集) 先是在系统 ...

  3. git SourceTree 客户端 安装/使用教程

    使用过SourceTree 之后发现比乌龟好多了 风来了.fox 1.安装之前的必备 1.1 git 客户端 http://msysgit.github.io/ 安装就PASS了,总之是直接下一步.直 ...

  4. Alpha(2/10)

    鐵鍋燉腯鱻 项目:小鱼记账 团队成员 项目燃尽图 冲刺情况描述 站立式会议照片 各成员情况 团队成员 学号 姓名 git地址 博客地址 031602240 许郁杨 (组长) https://githu ...

  5. Java数组常用方法

    数组基础:http://www.cnblogs.com/mengdd/archive/2013/01/04/2844264.html import java.util.Arrays; 1):创建数组 ...

  6. BZOJ.5287.[AHOI HNOI2018]毒瘤(虚树 树形DP)

    BZOJ LOJ 洛谷 设\(f[i][0/1]\)表示到第\(i\)个点,不选/选这个点的方案数.对于一棵树,有:\[f[x][0]=\prod_{v\in son[x]}(f[v][0]+f[v] ...

  7. 2017-10-5-Python

    想学习Python很长时间了,工作中使用Python脚本解决问题真的很爽. 插入一张Python的py文件常见的结构图: if __name__ =="__main__" 这条语句 ...

  8. 【DWM1000】 code 解密7一ANCHOR接收到BLINK

    接着之前ANCHOR的代码分析,但接收到无线数据,应该执行如下代码 case TA_RX_WAIT_DATA :   //already recive a message                ...

  9. sql基本查询语句

    查询语句的五中字句:where(条件查询),having(筛选),group by(分组),order by(排序),Limit(限制结果数) 一 单表查询 1.查询指定列:select 列名 fro ...

  10. 转 Configuring Relationships with the Fluent API

    http://msdn.microsoft.com/zh-cn/data/jj591620 Configuring a Required-to-Optional Relationship (One-t ...