本文转自:https://www.linuxidc.com/Linux/2018-02/150886.htm

一、Spark on Standalone

1.spark集群启动后,Worker向Master注册信息

2.spark-submit命令提交程序后,driver和application也会向Master注册信息

3.创建SparkContext对象:主要的对象包含DAGScheduler和TaskScheduler

4.Driver把Application信息注册给Master后,Master会根据App信息去Worker节点启动Executor

5.Executor内部会创建运行task的线程池,然后把启动的Executor反向注册给Dirver

6.DAGScheduler:负责把Spark作业转换成Stage的DAG(Directed Acyclic Graph有向无环图),根据宽窄依赖切分Stage,

        然后把Stage封装成TaskSet的形式发送个TaskScheduler;

          同时DAGScheduler还会处理由于Shuffle数据丢失导致的失败;

7.TaskScheduler:维护所有TaskSet,分发Task给各个节点的Executor(根据数据本地化策略分发Task),监控task的运行状态,负责重试失败的task;

8.所有task运行完成后,SparkContext向Master注销,释放资源;

注:job的失败不会重试

二、Spark on Yarn

yarn是一种统一的资源管理机制,可以通过队列的方式,管理运行多套计算框架。Spark on Yarn模式根据Dirver在集群中的位置分为两种模式

一种是Yarn-Client模式,另一种是Yarn-Cluster模式

yarn框架的基本运行流程图

ResourceManager:负责将集群的资源分配给各个应用使用,而资源分配和调度的基本单位是Container,

               其中封装了集群资源(CPU、内存、磁盘等),每个任务只能在Container中运行,并且只使用Container中的资源;

NodeManager:是一个个计算节点,负责启动Application所需的Container,并监控资源的使用情况汇报给ResourceManager

ApplicationMaster:主要负责向ResourceManager申请Application的资源,获取Container并跟踪这些Container的运行状态和执行进度,

         执行完后通知ResourceManager注销ApplicationMaster,ApplicationMaster也是运行在Container中;

(1)client

yarn-client模式,Dirver运行在本地的客户端上。

1.client向ResouceManager申请启动ApplicationMaster,同时在SparkContext初始化中创建DAGScheduler和TaskScheduler

2.ResouceManager收到请求后,在一台NodeManager中启动第一个Container运行ApplicationMaster

3.Dirver中的SparkContext初始化完成后与ApplicationMaster建立通讯,ApplicationMaster向ResourceManager申请Application的资源

4.一旦ApplicationMaster申请到资源,便与之对应的NodeManager通讯,启动Executor,并把Executor信息反向注册给Dirver

5.Dirver分发task,并监控Executor的运行状态,负责重试失败的task

6.运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己

(2)cluster

yarn-cluster模式中,当用户向yarn提交应用程序后,yarn将分为两阶段运行该应用程序:

第一个阶段是把Spark的Dirver作为一个ApplicationMaster在yarn中启动;

第二个阶段是ApplicationMaster向ResourceManager申请资源,并启动Executor来运行task,同时监控task整个运行流程并重试失败的task;

Yarn-client和Yarn-cluster的区别:

yarn-cluster模式下,Dirver运行在ApplicationMaster中,负责申请资源并监控task运行状态和重试失败的task,

当用户提交了作业之后就可以关掉client,作业会继续在yarn中运行;

yarn-client模式下,Dirver运行在本地客户端,client不能离开。

Spark集群的任务提交执行流程的更多相关文章

  1. Spark集群之yarn提交作业优化案例

    Spark集群之yarn提交作业优化案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.启动Hadoop集群 1>.自定义批量管理脚本 [yinzhengjie@s101 ...

  2. spark集群启动步骤及web ui查看

    集群启动步骤:先启动HDFS系统,在启动spark集群,最后提交jar到spark集群执行. 1.hadoop启动cd /home/***/hadoop-2.7.4/sbinstart-all.sh ...

  3. 安装Spark集群(在CentOS上)

    环境:CentOS 6.4, Hadoop 1.1.2, JDK 1.7, Spark 0.7.2, Scala 2.9.3 1. 安装 JDK 1.7 yum search openjdk-deve ...

  4. Spark集群任务提交流程----2.1.0源码解析

    Spark的应用程序是通过spark-submit提交到Spark集群上运行的,那么spark-submit到底提交了什么,集群是怎样调度运行的,下面一一详解. 0. spark-submit提交任务 ...

  5. 大数据技术之_19_Spark学习_01_Spark 基础解析 + Spark 概述 + Spark 集群安装 + 执行 Spark 程序

    第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2 ...

  6. Spark 集群 任务提交模式

    Spark 集群的模式及提交任务的方式 本文大致的内容图 Spark 集群的两种模式: Standalone 模式 Standalone-client 任务提交方式 提交命令 ./spark-subm ...

  7. Spark集群和任务执行

    [前言:承接<Spark通识>篇] Spark集群组件 Spark是典型的Master/Slave架构,集群主要包括以下4个组件: Driver:Spark框架中的驱动器,运行用户编写Ap ...

  8. Spark集群模式&Spark程序提交

    Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos- ...

  9. 将java开发的wordcount程序提交到spark集群上运行

    今天来分享下将java开发的wordcount程序提交到spark集群上运行的步骤. 第一个步骤之前,先上传文本文件,spark.txt,然用命令hadoop fs -put spark.txt /s ...

随机推荐

  1. 实战C++对象模型之成员函数调用

    先说结论:C++的类成员函数和C函数实质是一样的,只是C++类成员函数多了隐藏参数this. 通过本文的演示,可以看见这背后的一切,完全可C函数方式调用C++类普通成员函数和C++类虚拟成员函数. 为 ...

  2. STM32外设初始化步骤

    1.定义外设结构体: 2.开启外设时钟: 3.调用缺省值配置函数: 4.外设具体配置: 5.外设使能.

  3. socketserver实现FTP

    功能: 1.用户加密认证 2.允许同时多用户登录 3.每个用户有自己的家目录 ,且只能访问自己的家目录 4.对用户进行磁盘配额,每个用户的可用空间不同 5.允许用户在ftp server上随意切换目录 ...

  4. Vuejs——(6)Vuejs与form元素

    版权声明:出处http://blog.csdn.net/qq20004604   目录(?)[+]   资料来于官方文档: http://cn.vuejs.org/guide/forms.html 本 ...

  5. Java 代码需要使用转义符的地方

    1.正则表达式特殊字符 Java 代码中使用到正则表达式里的特殊字符需要使用转义符 \ 进行转义 . ? * + ! ^ $ [ ] ( ) \ 因为反斜线 \ 也是特殊字符,所以转义需双反斜线 \\ ...

  6. 阿里开源项目arthas安装使用

    文档地址 https://alibaba.github.io/arthas/install-detail.html 开始安装 我本地就装window版本了,下载zip包 按照快速入门,编译demo程序 ...

  7. 机器学习基石笔记:06 Theory of Generalization

    若H的断点为k,即k个数据点不能被H给shatter,那么k+1个数据点也不能被H给shatter,即k+1也是H的断点. 如果给定的样本数N是大于等于k的,易得mH(N)<2N,且随着N的增大 ...

  8. unity2d开发windows phone游戏按钮问题

    今天在进行unity2d项目对windows phone工程的编译过程中,发现了一个很蛋疼的bug,windows phone编译运行后,GUILayout.Button出现自动点击的现象,这带来了很 ...

  9. Spark基础脚本入门实践2:基础开发

    1.最基本的Map用法 val data = Array(1, 2, 3, 4, 5)val distData = sc.parallelize(data)val result = distData. ...

  10. 转载 Python 正则表达式入门(初级篇)

    Python 正则表达式入门(初级篇) 本文主要为没有使用正则表达式经验的新手入门所写.转载请写明出处 引子 首先说 正则表达式是什么? 正则表达式,又称正规表示式.正规表示法.正规表达式.规则表达式 ...