### Spark SQL Running the SET -v command will show the entire list of the SQL configuration.

#scala
// spark is an existing SparkSession
spark.sql("SET -v").show(numRows = 200, truncate = false)
#java
// spark is an existing SparkSession
spark.sql("SET -v").show(200, false);
#python
# spark is an existing SparkSession
spark.sql("SET -v").show(n=200, truncate=False);
#R
sparkR.session()
properties <- sql("SET -v")
showDF(properties, numRows = 200, truncate = FALSE)
### Spark Streaming
Property Name Default Meaning
spark.streaming.backpressure.enabled false Enables or disables Spark Streaming's internal backpressure mechanism (since 1.5). This enables the Spark Streaming to control the receiving rate based on the current batch scheduling delays and processing times so that the system receives only as fast as the system can process. Internally, this dynamically sets the maximum receiving rate of receivers. This rate is upper bounded by the values spark.streaming.receiver.maxRateand spark.streaming.kafka.maxRatePerPartition if they are set (see below).
spark.streaming.backpressure.initialRate not set This is the initial maximum receiving rate at which each receiver will receive data for the first batch when the backpressure mechanism is enabled.
spark.streaming.blockInterval 200ms Interval at which data received by Spark Streaming receivers is chunked into blocks of data before storing them in Spark. Minimum recommended - 50 ms. See the performance tuningsection in the Spark Streaming programing guide for more details.
spark.streaming.receiver.maxRate not set Maximum rate (number of records per second) at which each receiver will receive data. Effectively, each stream will consume at most this number of records per second. Setting this configuration to 0 or a negative number will put no limit on the rate. See the deployment guide in the Spark Streaming programing guide for mode details.
spark.streaming.receiver.writeAheadLog.enable false Enable write ahead logs for receivers. All the input data received through receivers will be saved to write ahead logs that will allow it to be recovered after driver failures. See the deployment guide in the Spark Streaming programing guide for more details.
spark.streaming.unpersist true Force RDDs generated and persisted by Spark Streaming to be automatically unpersisted from Spark's memory. The raw input data received by Spark Streaming is also automatically cleared. Setting this to false will allow the raw data and persisted RDDs to be accessible outside the streaming application as they will not be cleared automatically. But it comes at the cost of higher memory usage in Spark.
spark.streaming.stopGracefullyOnShutdown false If true, Spark shuts down the StreamingContext gracefully on JVM shutdown rather than immediately.
spark.streaming.kafka.maxRatePerPartition not set Maximum rate (number of records per second) at which data will be read from each Kafka partition when using the new Kafka direct stream API. See the Kafka Integration guide for more details.
spark.streaming.kafka.maxRetries 1 Maximum number of consecutive retries the driver will make in order to find the latest offsets on the leader of each partition (a default value of 1 means that the driver will make a maximum of 2 attempts). Only applies to the new Kafka direct stream API.
spark.streaming.ui.retainedBatches 1000 How many batches the Spark Streaming UI and status APIs remember before garbage collecting.
spark.streaming.driver.writeAheadLog.closeFileAfterWrite false Whether to close the file after writing a write ahead log record on the driver. Set this to 'true' when you want to use S3 (or any file system that does not support flushing) for the metadata WAL on the driver.
spark.streaming.receiver.writeAheadLog.closeFileAfterWrite false Whether to close the file after writing a write ahead log record on the receivers. Set this to 'true' when you want to use S3 (or any file system that does not support flushing) for the data WAL on the receivers.
### SparkR
Property Name Default Meaning
spark.r.numRBackendThreads 2 Number of threads used by RBackend to handle RPC calls from SparkR package.
spark.r.command Rscript Executable for executing R scripts in cluster modes for both driver and workers.
spark.r.driver.command spark.r.command Executable for executing R scripts in client modes for driver. Ignored in cluster modes.
spark.r.shell.command R Executable for executing sparkR shell in client modes for driver. Ignored in cluster modes. It is the same as environment variable SPARKR_DRIVER_R, but take precedence over it. spark.r.shell.command is used for sparkR shell while spark.r.driver.command is used for running R script.
spark.r.backendConnectionTimeout 6000 Connection timeout set by R process on its connection to RBackend in seconds.
spark.r.heartBeatInterval 100 Interval for heartbeats sent from SparkR backend to R process to prevent connection timeout.
### GraphX
Property Name Default Meaning
spark.graphx.pregel.checkpointInterval -1 Checkpoint interval for graph and message in Pregel. It used to avoid stackOverflowError due to long lineage chains after lots of iterations. The checkpoint is disabled by default.
### Deploy
Property Name Default Meaning
spark.deploy.recoveryMode NONE The recovery mode setting to recover submitted Spark jobs with cluster mode when it failed and relaunches. This is only applicable for cluster mode when running with Standalone or Mesos.
spark.deploy.zookeeper.url None When `spark.deploy.recoveryMode` is set to ZOOKEEPER, this configuration is used to set the zookeeper URL to connect to.
spark.deploy.zookeeper.dir None When `spark.deploy.recoveryMode` is set to ZOOKEEPER, this configuration is used to set the zookeeper directory to store recovery state.
### Cluster Managers Each cluster manager in Spark has additional configuration options. Configurations can be found on the pages for each mode: #### [YARN](running-on-yarn.html#configuration) #### [Mesos](running-on-mesos.html#configuration) #### [Standalone Mode](spark-standalone.html#cluster-launch-scripts) # Environment Variables Certain Spark settings can be configured through environment variables, which are read from the `conf/spark-env.sh` script in the directory where Spark is installed (or `conf/spark-env.cmd` on Windows). In Standalone and Mesos modes, this file can give machine specific information such as hostnames. It is also sourced when running local Spark applications or submission scripts. Note that `conf/spark-env.sh` does not exist by default when Spark is installed. However, you can copy `conf/spark-env.sh.template` to create it. Make sure you make the copy executable. The following variables can be set in `spark-env.sh`:
Environment Variable Meaning
JAVA_HOME Location where Java is installed (if it's not on your default PATH).
PYSPARK_PYTHON Python binary executable to use for PySpark in both driver and workers (default is python2.7 if available, otherwise python). Property spark.pyspark.python take precedence if it is set
PYSPARK_DRIVER_PYTHON Python binary executable to use for PySpark in driver only (default is PYSPARK_PYTHON). Property spark.pyspark.driver.python take precedence if it is set
SPARKR_DRIVER_R R binary executable to use for SparkR shell (default is R). Property spark.r.shell.command take precedence if it is set
SPARK_LOCAL_IP IP address of the machine to bind to.
SPARK_PUBLIC_DNS Hostname your Spark program will advertise to other machines.
 除上述之外,还可以选择设置Spark [独立群集脚本](spark-standalone.html#cluster-launch-scripts),例如每台机器上使用的内核数量和最大内存。由于`spark-env.sh`是一个shell脚本,其中一些可以通过程序设置 - 例如,您可以通过查找特定网络接口的IP来计算`SPARK_LOCAL_IP`。注意:在`cluster`模式下在YARN上运行Spark时,需要使用`conf / spark-defaults.conf`文件中的`spark.yarn.appMasterEnv。[EnvironmentVariableName]`属性来设置环境变量。在`spark-env.sh`中设置的环境变量不会在`cluster`模式中反映在YARN Application Master进程中。有关更多信息,请参阅[与YARN相关的Spark属性](run-on-yarn.html#spark-properties)。#配置日志记录Spark使用[log4j](http://logging.apache.org/log4j/)进行日志记录。你可以通过在`conf`目录下添加`log4j.properties`文件来配置它。一种开始的方法是复制现有的`log4j.properties.template`。#覆盖配置目录要指定不同于默认“SPARK_HOME / conf”的配置目录,可以设置SPARK_CONF_DIR。Spark将使用该目录中的配置文件(spark-defaults.conf,spark-env.sh,log4j.properties等)。#继承Hadoop集群配置如果您计划使用Spark从HDFS进行读写,则需要在Spark类路径中包含两个Hadoop配置文件:*`hdfs-site.xml`,它提供HDFS客户端的默认行为。*`core-site.xml`,其中设置了默认的文件系统名称。这些配置文件的位置因Hadoop版本而异,但常见的位置在`/ etc / hadoop / conf`中。一些工具可以即时创建配置,但提供了一个下载它们的机制。要使这些文件对Spark可见,请将`$ SPARK_HOME / spark-env.sh`中的`HADOOP_CONF_DIR`设置为包含配置文件的位置。

Spark记录-官网学习配置篇(二)的更多相关文章

  1. Spark记录-官网学习配置篇(一)

    参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用Sp ...

  2. Spring官网阅读 | 总结篇

    接近用了4个多月的时间,完成了整个<Spring官网阅读>系列的文章,本文主要对本系列所有的文章做一个总结,同时也将所有的目录汇总成一篇文章方便各位读者来阅读. 下面这张图是我整个的写作大 ...

  3. Knockout.Js官网学习(系列)

    1.Knockout.Js官网学习(简介) 2.Knockout.Js官网学习(监控属性Observables) Knockout.Js官网学习(数组observable) 3.Knockout.Js ...

  4. 【Spark深入学习 -16】官网学习SparkSQL

    ----本节内容-------1.概览        1.1 Spark SQL        1.2 DatSets和DataFrame2.动手干活        2.1 契入点:SparkSess ...

  5. Spark源码编译,官网学习

    这里以spark-1.6.0版本为例 官网网址   http://spark.apache.org/docs/1.6.0/building-spark.html#building-with-build ...

  6. 【重点突破】—— UniApp 微信小程序开发官网学习One

    一.初步认识 uni-app官网:https://uniapp.dcloud.io/component/README HBuilderX官方IDE下载地址: http://www.dcloud.io/ ...

  7. 程序员必知的技术官网系列--mysql篇

    mysql 官网 https://www.mysql.com/ 官网布局很简单, 其中常用的两块就是下载和文档这两块, 其中下载没什么可讲的, 本次重点依旧是文档. 首页 mysql 文档导航页 ht ...

  8. React官网学习笔记

    欢迎指导与讨论 : ) 前言 本文主要是笔者在React英文官网学习时整理的笔记.由于笔者水平有限,如有错误恳请指出 O(∩_∩)O 一 .Tutoial 篇 1 . React的组件类名的首字母必须 ...

  9. Tomcat 官网知识总结篇

    Tomcat 官网知识总结一.Tomcat 基本介绍 1.关键目录 a) bin 该目录包含了启动.停止和启动其他的脚本,如startup.sh.shutdown.sh等; b) conf 配置文件和 ...

随机推荐

  1. Java虚拟机笔记(五):JVM中对象的分代

    为什么要分代 为什么需要把堆分代?不分代不能完成他所做的事情么?其实不分代完全可以,分代的唯一理由就是优化GC性能.你先想想,如果没有分代,那我们所有的对象都在一块,GC的时候我们要找到哪些对象没用, ...

  2. docker之compose 编排项目

    一.docker-compose 的介绍 docker-compose是一种容器编排工具,可以将多个docker容器关联部署.通过yaml文件,可以描述应用的架构,如使用什么镜像.数据卷.网络.绑定服 ...

  3. c语言数字图像处理(一):bmp图片格式及灰度图片转换

    本篇文章首先介绍了bmp图片格式,主要参考wiki上的内容,包括bmp文件的存储方式,对于一些常见的bmp文件格式都给了例子,并且对8位 16位RGB555 16位RGB565格式的bmp文件进行了简 ...

  4. python 游戏(猜数字)

    1. 构造猜数字核心函数 import random def guess_core(guess_min,guess_max,guess_counrt): '''猜数字核心判断函数 :param gue ...

  5. 【大数据实战】将普通文本文件导入ElasticSearch

    以<刑法>文本.txt为例. 一.格式化数据 1,首先,ElasticSearch只能接收格式化的数据,所以,我们需要将文本文件转换为格式化的数据---json. 下图为未处理的文本文件. ...

  6. 机器学习初入门03 - Matplotlib

    这一部分很简单,所以以代码的形式给出,在实际学习开发中,Matplotlib最好只把它当成一个画图的工具来用,没有必要深究其实现原理是什么. 一.折线图的绘制 import pandas as pd ...

  7. Vigenere加密

    Vigenere加密法原理很简单,实现起来也不难.与普通的单码加密法不同,明文经过加密之后,每个字母出现的频率就不会有高峰和低峰. 密钥中字母代表行和明文中的字母代表行.在vigenere表中找到对应 ...

  8. 一份超全超详细的 ADB 用法大全

    http://blog.csdn.net/u010375364/article/details/52344120

  9. Daily Scrum 11.1

    今天放假一天,明天又是新的一周,预计开始Alpha版本所有功能的整合和优化,争取在两天内完成各种功能的整合. Member Task on 11.1 Task on 11.2 仇栋民 放假一天 开始T ...

  10. SSM 项目搭建 (IDEA)

    好好想了想,还是准备给大家发一个简单的SSM的项目搭建教程. 我觉得通常来说,只是XML的配置文件可能让人头痛了点,其他的倒真不是问题. 不过话说回来,mybatis一直让我觉得用起来不方便.因为数据 ...