### Spark SQL Running the SET -v command will show the entire list of the SQL configuration.

#scala
// spark is an existing SparkSession
spark.sql("SET -v").show(numRows = 200, truncate = false)
#java
// spark is an existing SparkSession
spark.sql("SET -v").show(200, false);
#python
# spark is an existing SparkSession
spark.sql("SET -v").show(n=200, truncate=False);
#R
sparkR.session()
properties <- sql("SET -v")
showDF(properties, numRows = 200, truncate = FALSE)
### Spark Streaming
Property Name Default Meaning
spark.streaming.backpressure.enabled false Enables or disables Spark Streaming's internal backpressure mechanism (since 1.5). This enables the Spark Streaming to control the receiving rate based on the current batch scheduling delays and processing times so that the system receives only as fast as the system can process. Internally, this dynamically sets the maximum receiving rate of receivers. This rate is upper bounded by the values spark.streaming.receiver.maxRateand spark.streaming.kafka.maxRatePerPartition if they are set (see below).
spark.streaming.backpressure.initialRate not set This is the initial maximum receiving rate at which each receiver will receive data for the first batch when the backpressure mechanism is enabled.
spark.streaming.blockInterval 200ms Interval at which data received by Spark Streaming receivers is chunked into blocks of data before storing them in Spark. Minimum recommended - 50 ms. See the performance tuningsection in the Spark Streaming programing guide for more details.
spark.streaming.receiver.maxRate not set Maximum rate (number of records per second) at which each receiver will receive data. Effectively, each stream will consume at most this number of records per second. Setting this configuration to 0 or a negative number will put no limit on the rate. See the deployment guide in the Spark Streaming programing guide for mode details.
spark.streaming.receiver.writeAheadLog.enable false Enable write ahead logs for receivers. All the input data received through receivers will be saved to write ahead logs that will allow it to be recovered after driver failures. See the deployment guide in the Spark Streaming programing guide for more details.
spark.streaming.unpersist true Force RDDs generated and persisted by Spark Streaming to be automatically unpersisted from Spark's memory. The raw input data received by Spark Streaming is also automatically cleared. Setting this to false will allow the raw data and persisted RDDs to be accessible outside the streaming application as they will not be cleared automatically. But it comes at the cost of higher memory usage in Spark.
spark.streaming.stopGracefullyOnShutdown false If true, Spark shuts down the StreamingContext gracefully on JVM shutdown rather than immediately.
spark.streaming.kafka.maxRatePerPartition not set Maximum rate (number of records per second) at which data will be read from each Kafka partition when using the new Kafka direct stream API. See the Kafka Integration guide for more details.
spark.streaming.kafka.maxRetries 1 Maximum number of consecutive retries the driver will make in order to find the latest offsets on the leader of each partition (a default value of 1 means that the driver will make a maximum of 2 attempts). Only applies to the new Kafka direct stream API.
spark.streaming.ui.retainedBatches 1000 How many batches the Spark Streaming UI and status APIs remember before garbage collecting.
spark.streaming.driver.writeAheadLog.closeFileAfterWrite false Whether to close the file after writing a write ahead log record on the driver. Set this to 'true' when you want to use S3 (or any file system that does not support flushing) for the metadata WAL on the driver.
spark.streaming.receiver.writeAheadLog.closeFileAfterWrite false Whether to close the file after writing a write ahead log record on the receivers. Set this to 'true' when you want to use S3 (or any file system that does not support flushing) for the data WAL on the receivers.
### SparkR
Property Name Default Meaning
spark.r.numRBackendThreads 2 Number of threads used by RBackend to handle RPC calls from SparkR package.
spark.r.command Rscript Executable for executing R scripts in cluster modes for both driver and workers.
spark.r.driver.command spark.r.command Executable for executing R scripts in client modes for driver. Ignored in cluster modes.
spark.r.shell.command R Executable for executing sparkR shell in client modes for driver. Ignored in cluster modes. It is the same as environment variable SPARKR_DRIVER_R, but take precedence over it. spark.r.shell.command is used for sparkR shell while spark.r.driver.command is used for running R script.
spark.r.backendConnectionTimeout 6000 Connection timeout set by R process on its connection to RBackend in seconds.
spark.r.heartBeatInterval 100 Interval for heartbeats sent from SparkR backend to R process to prevent connection timeout.
### GraphX
Property Name Default Meaning
spark.graphx.pregel.checkpointInterval -1 Checkpoint interval for graph and message in Pregel. It used to avoid stackOverflowError due to long lineage chains after lots of iterations. The checkpoint is disabled by default.
### Deploy
Property Name Default Meaning
spark.deploy.recoveryMode NONE The recovery mode setting to recover submitted Spark jobs with cluster mode when it failed and relaunches. This is only applicable for cluster mode when running with Standalone or Mesos.
spark.deploy.zookeeper.url None When `spark.deploy.recoveryMode` is set to ZOOKEEPER, this configuration is used to set the zookeeper URL to connect to.
spark.deploy.zookeeper.dir None When `spark.deploy.recoveryMode` is set to ZOOKEEPER, this configuration is used to set the zookeeper directory to store recovery state.
### Cluster Managers Each cluster manager in Spark has additional configuration options. Configurations can be found on the pages for each mode: #### [YARN](running-on-yarn.html#configuration) #### [Mesos](running-on-mesos.html#configuration) #### [Standalone Mode](spark-standalone.html#cluster-launch-scripts) # Environment Variables Certain Spark settings can be configured through environment variables, which are read from the `conf/spark-env.sh` script in the directory where Spark is installed (or `conf/spark-env.cmd` on Windows). In Standalone and Mesos modes, this file can give machine specific information such as hostnames. It is also sourced when running local Spark applications or submission scripts. Note that `conf/spark-env.sh` does not exist by default when Spark is installed. However, you can copy `conf/spark-env.sh.template` to create it. Make sure you make the copy executable. The following variables can be set in `spark-env.sh`:
Environment Variable Meaning
JAVA_HOME Location where Java is installed (if it's not on your default PATH).
PYSPARK_PYTHON Python binary executable to use for PySpark in both driver and workers (default is python2.7 if available, otherwise python). Property spark.pyspark.python take precedence if it is set
PYSPARK_DRIVER_PYTHON Python binary executable to use for PySpark in driver only (default is PYSPARK_PYTHON). Property spark.pyspark.driver.python take precedence if it is set
SPARKR_DRIVER_R R binary executable to use for SparkR shell (default is R). Property spark.r.shell.command take precedence if it is set
SPARK_LOCAL_IP IP address of the machine to bind to.
SPARK_PUBLIC_DNS Hostname your Spark program will advertise to other machines.
 除上述之外,还可以选择设置Spark [独立群集脚本](spark-standalone.html#cluster-launch-scripts),例如每台机器上使用的内核数量和最大内存。由于`spark-env.sh`是一个shell脚本,其中一些可以通过程序设置 - 例如,您可以通过查找特定网络接口的IP来计算`SPARK_LOCAL_IP`。注意:在`cluster`模式下在YARN上运行Spark时,需要使用`conf / spark-defaults.conf`文件中的`spark.yarn.appMasterEnv。[EnvironmentVariableName]`属性来设置环境变量。在`spark-env.sh`中设置的环境变量不会在`cluster`模式中反映在YARN Application Master进程中。有关更多信息,请参阅[与YARN相关的Spark属性](run-on-yarn.html#spark-properties)。#配置日志记录Spark使用[log4j](http://logging.apache.org/log4j/)进行日志记录。你可以通过在`conf`目录下添加`log4j.properties`文件来配置它。一种开始的方法是复制现有的`log4j.properties.template`。#覆盖配置目录要指定不同于默认“SPARK_HOME / conf”的配置目录,可以设置SPARK_CONF_DIR。Spark将使用该目录中的配置文件(spark-defaults.conf,spark-env.sh,log4j.properties等)。#继承Hadoop集群配置如果您计划使用Spark从HDFS进行读写,则需要在Spark类路径中包含两个Hadoop配置文件:*`hdfs-site.xml`,它提供HDFS客户端的默认行为。*`core-site.xml`,其中设置了默认的文件系统名称。这些配置文件的位置因Hadoop版本而异,但常见的位置在`/ etc / hadoop / conf`中。一些工具可以即时创建配置,但提供了一个下载它们的机制。要使这些文件对Spark可见,请将`$ SPARK_HOME / spark-env.sh`中的`HADOOP_CONF_DIR`设置为包含配置文件的位置。

Spark记录-官网学习配置篇(二)的更多相关文章

  1. Spark记录-官网学习配置篇(一)

    参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用Sp ...

  2. Spring官网阅读 | 总结篇

    接近用了4个多月的时间,完成了整个<Spring官网阅读>系列的文章,本文主要对本系列所有的文章做一个总结,同时也将所有的目录汇总成一篇文章方便各位读者来阅读. 下面这张图是我整个的写作大 ...

  3. Knockout.Js官网学习(系列)

    1.Knockout.Js官网学习(简介) 2.Knockout.Js官网学习(监控属性Observables) Knockout.Js官网学习(数组observable) 3.Knockout.Js ...

  4. 【Spark深入学习 -16】官网学习SparkSQL

    ----本节内容-------1.概览        1.1 Spark SQL        1.2 DatSets和DataFrame2.动手干活        2.1 契入点:SparkSess ...

  5. Spark源码编译,官网学习

    这里以spark-1.6.0版本为例 官网网址   http://spark.apache.org/docs/1.6.0/building-spark.html#building-with-build ...

  6. 【重点突破】—— UniApp 微信小程序开发官网学习One

    一.初步认识 uni-app官网:https://uniapp.dcloud.io/component/README HBuilderX官方IDE下载地址: http://www.dcloud.io/ ...

  7. 程序员必知的技术官网系列--mysql篇

    mysql 官网 https://www.mysql.com/ 官网布局很简单, 其中常用的两块就是下载和文档这两块, 其中下载没什么可讲的, 本次重点依旧是文档. 首页 mysql 文档导航页 ht ...

  8. React官网学习笔记

    欢迎指导与讨论 : ) 前言 本文主要是笔者在React英文官网学习时整理的笔记.由于笔者水平有限,如有错误恳请指出 O(∩_∩)O 一 .Tutoial 篇 1 . React的组件类名的首字母必须 ...

  9. Tomcat 官网知识总结篇

    Tomcat 官网知识总结一.Tomcat 基本介绍 1.关键目录 a) bin 该目录包含了启动.停止和启动其他的脚本,如startup.sh.shutdown.sh等; b) conf 配置文件和 ...

随机推荐

  1. Elasticsearch Java Rest Client API 整理总结 (二) —— SearchAPI

    目录 引言 Search APIs Search API Search Request 可选参数 使用 SearchSourceBuilder 构建查询条件 指定排序 高亮请求 聚合请求 建议请求 R ...

  2. okhttp3.4.1+retrofit2.1.0实现离线缓存

    关于Retrofit+OkHttp的强大这里就不多说了,还没了解的同学可以自行去百度.这篇文章主要讲如何利用Retrofit+OkHttp来实现一个较为简单的缓存策略:即有网环境下我们请求数据时,如果 ...

  3. Centos 7 安装mysql5.7.24二进制 版本

    Mysql 二进制安装方法 下载mysql https://dev.mysql.com/downloads/mysql/ 1.解压包 tar xf mysql-5.7.24-linux-glibc2. ...

  4. Codejam Qualification Round 2019

    本渣清明节 闲里偷忙 做了一下codejam 水平不出意外的在投稿之后一落千丈 后两题的hidden test竟然都挂了 A. Foregone Solution 水题,稍微判断一下特殊情况(比如10 ...

  5. 【SE】Week7 : Silver Bullet & Cathedral and Bazaar & Big Ball of Mud & Waterfall ...

    1. Silver Bullet No Silver Bullet: Essence and Accidents of Software Engineering —— 无银弹理论,出自于美国1999年 ...

  6. Sprint report

    Sprint report 一.需求分析:随着在校大学生人数的不断增加,许多高校出现了许多个校区并存的局面,并且校区之间的地理位置跨度非常大,给高校选课带来了很大的不方便,数据处理手工操作,工作量大, ...

  7. Feature List

    我组最终决定所做的软件工程项目是Bing词典(UWP)的背单词模块,下面是初步定下的Feature List. 按用户场景变化顺序列举(假设是新用户): 1.用户可通过点击“背单词”标识或按钮进入背单 ...

  8. RANCHER2.0 的简单使用

    1. RANCHER2.0  能够管理 k8s 集群 也能够用来搭建 k8s 集群 但是因为网络问题 只测试了如何去管理集群 还没有去 测试 安装集群. 2. 创建rancher 服务的方法 dock ...

  9. 6 vue-cli mock数据

    https://www.cnblogs.com/dengxiaolei/p/7338773.html //--------------------------------------const por ...

  10. MySQL基础(一):基本操作

    一.下载安装及连接 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下公司.MySQL 最流行的关系型数据库管理系统,在 WEB 应用方面MySQL是 ...