P4494-[HAOI2018]反色游戏【圆方树】
正题
题目链接:https://www.luogu.com.cn/problem/P4494
题目大意
给出\(n\)个点\(m\)条边的一张无向图,节点有\(0/1\),每条边可以选择是否取反两边的点。
开始求将所有节点变为\(0\)的方案,然后对于每个点询问删去这个点之后的方案
\(1\leq T\leq 5,1\leq n,m\leq 10^5\)
解题思路
图的比较麻烦,先考虑树上的,那么每条边取不取反取决于它连接的子节点的黑白,但是根节点却无法这么调整。所以如果黑色个数为奇数个那么方案为\(0\),否则方案为\(1\)。
然后考虑一张连通图,考虑对于图中的一个生成树来说,无论非生成树上的边是否取反,都可以用这棵生成树调整回来,也就是如果黑色为奇数个方案为\(0\),否则方案为\(2^{m-n+1}\)。
因为原图不一定连通,设连通块个数为\(k\),那么第一问答案就是\(2^{m-n+k}\)(每个连通块的黑色个数为奇数个)。
然后第二问,其实就是去掉这条边之后会分割一个连通块以影响答案。
建立广义圆方树,统计每个点删去后会多产生的连通块数量以及是否有分割出来的连通块的黑色个数为奇数。
顺带一提的是需要特判如果有两个或者以上的连通块黑色为奇数个,那么全都无解,否则只有可能删除掉黑色奇数连通块里的点。
时间复杂度\(O(Tn)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<vector>
#define ll long long
using namespace std;
const ll N=2e5+10,P=1e9+7;
ll Z,n,m,dfc,sum,cnt,st[N],deg[N];
ll dfn[N],low[N],pw[N],siz[N];
bool tag[N],nok[N],v[N];
stack<ll> s;char t[N];
vector<ll>G[N],T[N];
void tarjan(ll x){
dfn[x]=low[x]=++dfc;sum+=(t[x]=='1');
s.push(x);st[++st[0]]=x;
for(ll i=0;i<G[x].size();i++){
ll y=G[x][i];
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
if(low[y]==dfn[x]){
ll k;++cnt;
do{
k=s.top();s.pop();deg[k]--;
T[cnt].push_back(k);
T[k].push_back(cnt);
}while(k!=y);
T[cnt].push_back(x);
T[x].push_back(cnt);
deg[x]--;
}
}
else low[x]=min(low[x],dfn[y]);
}
return;
}
void dfs(ll x){
v[x]=1;st[++st[0]]=x;
siz[x]=(x<=n)&(t[x]=='1');
for(ll i=0;i<T[x].size();i++){
ll y=T[x][i];
if(v[y])continue;
dfs(y);siz[x]+=siz[y];
if(siz[y]&1)nok[x]=1;
}
return;
}
signed main()
{
scanf("%lld",&Z);pw[0]=1;
for(ll i=1;i<N;i++)pw[i]=pw[i-1]*2%P;
while(Z--){
dfc=0;
memset(deg,0,sizeof(deg));
memset(nok,0,sizeof(nok));
memset(tag,0,sizeof(tag));
memset(dfn,0,sizeof(dfn));
memset(v,0,sizeof(v));
while(!s.empty())s.pop();
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=2*n;i++)
T[i].clear(),G[i].clear();
for(ll i=1;i<=m;i++){
ll x,y;scanf("%lld%lld",&x,&y);
G[x].push_back(y);deg[x]++;
G[y].push_back(x);deg[y]++;
}
scanf("%s",t+1);cnt=n;
ll one=0,k=0;
for(ll i=1;i<=n;i++){
if(dfn[i])continue;
st[0]=sum=0;
tarjan(i);k++;
if(sum&1){
for(ll j=1;j<=st[0];j++)
tag[st[j]]=1;
one++;
}
}
if(one>1){
for(ll i=0;i<=n;i++)printf("0 ");
putchar('\n');continue;
}
else if(one)printf("0 ");
else printf("%lld ",pw[m-n+k]);
for(ll i=1;i<=n;i++){
if(v[i])continue;
st[0]=0;dfs(i);
for(ll j=1;j<=st[0];j++)
if((siz[i]-siz[st[j]])&1)nok[st[j]]=1;
}
for(ll i=1;i<=n;i++)
if(nok[i]||(one&&!tag[i]))printf("0 ");
else printf("%lld ",pw[m-n+k-deg[i]]);
putchar('\n');
}
return 0;
}
P4494-[HAOI2018]反色游戏【圆方树】的更多相关文章
- P4494 [HAOI2018]反色游戏
P4494 [HAOI2018]反色游戏 题意 给你一个无向图,图上每个点是黑色或者白色.你可以将一条边的两个端点颜色取反.问你有多少种方法每个边至多取反一次使得图上全变成白色的点. 思路 若任意一个 ...
- 洛谷P4494 [HAOI2018]反色游戏(tarjan)
题面 传送门 题解 我们先来考虑一个联通块,这些关系显然可以写成一个异或方程组的形式,形如\(\oplus_{e\in edge_u}x_e=col_u\) 如果这个联通块的黑色点个数为奇数,那么显然 ...
- bzoj 5393 [HAOI2018] 反色游戏
bzoj 5393 [HAOI2018] 反色游戏 Link Solution 最简单的性质:如果一个连通块黑点个数是奇数个,那么就是零(每次只能改变 \(0/2\) 个黑点) 所以我们只考虑偶数个黑 ...
- 【BZOJ5303】[HAOI2018]反色游戏(Tarjan,线性基)
[BZOJ5303][HAOI2018]反色游戏(Tarjan,线性基) 题面 BZOJ 洛谷 题解 把所有点全部看成一个\(01\)串,那么每次选择一条边意味着在这个\(01\)串的基础上异或上一个 ...
- bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)
bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...
- 【loj#2524】【bzoj5303】 [Haoi2018]反色游戏(圆方树)
题目传送门:loj bzoj 题意中的游戏方案可以转化为一个异或方程组的解,将边作为变量,点作为方程,因此若方程有解,方程的解的方案数就是2的自由元个数次方.我们观察一下方程,就可以发现自由元数量=边 ...
- [BZOJ5303] [HAOI2018] 反色游戏
题目链接 LOJ:https://loj.ac/problem/2524 BZOJ:https://lydsy.com/JudgeOnline/problem.php?id=5303 洛谷:https ...
- BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)
Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...
- [SDOI2018]战略游戏 圆方树,树链剖分
[SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中 ...
- BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)
题目链接 显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点. 对于询问,显然可以建虚树.但是只需要计算两关键点间路径权值,所以不需要建出虚树.统计DFS序相邻的两关键点 ...
随机推荐
- Docker创建Docker-Registry-私服
docker-compose.yml version: '3.1' services: registry: image: registry restart: always container_name ...
- commandBinding 的命令
<Window x:Class="WpfApplication1.Window29" xmlns="http://schemas.microsoft.com/win ...
- windows下删除文件夹里的 .svn
windows下: 删除文件夹里的 .svn, cmd 进入相应目录 运行 for /r ./ %a in (./) do @if exist "%a/.svn" rd ...
- servlet中servletContext的五大作用(三)
1. 获取web的上下文路径 2. 获取全局的参数 3. 作为域对象使用 4. 请求转发 5. 读取web项目的资源文件 package day10.about_serv ...
- 转:自增(自减)在Java与C中的区别
转自:http://seiyatime.blog.sohu.com/84358295.html 话说昨日面试,在笔试的25个选择题中,涉及自增自减不止一两题,以前在开发过程中并没太在意这方面的问题,也 ...
- 刷题-力扣-541. 反转字符串 II
541. 反转字符串 II 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/reverse-string-ii 著作权归领扣网络所有. ...
- Go: 复合数据类型slice
slice slice 表示用于相同类型元素的可变长度的序列. slice有三个属性:指针.长度和容量. 指针:slice存储数据的内部结构是数组,指针指向的是数组的地址 长度:保存slice中的元素 ...
- 恶意软件开发——编写第一个Loader加载器
一.什么是shellcode loader? 上一篇文章说了,我们说到了什么是shellcode,为了使我们的shellcode加载到内存并执行,我们需要shellcode加载器,也就是我们的shel ...
- 剖析虚幻渲染体系(11)- RDG
目录 11.1 本篇概述 11.2 RDG基础 11.2.1 RDG基础类型 11.2.2 RDG资源 11.2.3 RDG Pass 11.2.4 FRDGBuilder 11.3 RDG机制 11 ...
- 简单明了的Java线程池
线程池 线程池从功能上来看,就是一个任务管理器.在Java中,Executor接口是线程池的根接口,其中只包含一个方法: Executor void execute(Runnable command) ...