James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation
\[
f(a) = (f_{\alpha}(a))_{\alpha \in J},
\]
where \(f_{\alpha}: A \rightarrow X_{\alpha}\) for each \(\alpha\). Let \(\prod X_{\alpha}\) have the product topology. Then the function \(f\) is continuous if and only if each function \(f_{\alpha}\) is continuous.
Comment: This is an extension of Theorem 18.4, where only two component spaces are involved.
Proof: a) First, we prove the projection map is continuous, which is defined on the Cartesian space constructed from a \(J\)-tuple of component spaces .
For all \(\beta \in J\), let \(\pi_{\beta}: \prod X_{\alpha} \rightarrow X_{\beta}\) be the projection map. For arbitrary open set \(V_{\beta}\) in \(X_{\beta}\), its pre-image under \(\pi_{\beta}\) is \(\pi_{\beta}^{-1}(V_{\beta})\), which is a subbasis element for the product topology on \(\prod X_{\alpha}\). Therefore, \(\pi_{\beta}^{-1}(V_{\beta})\) is open and the projection map \(\pi_{\beta}\) is continuous.
Next, we notice that for all \(\alpha \in J\), the coordinate function \(f_{\alpha}: A \rightarrow X_{\alpha}\) is a composition of the two continuous functions \(f\) and \(\pi_{\alpha}\), i.e. \(f_{\alpha} = \pi_{\alpha} \circ f\). Then according to Theorem 18.2 (c), \(f_{\alpha}\) is continuous.
Remark: Because the box topology is finer than the product topology, the projection map is also continuous when the box topology is adopted for \(\prod X_{\alpha}\). Therefore, this part of the theorem is true for both product topology and box topology.
b) Analysis: To prove the continuity of a function, showing that the pre-image of any subbasis element in the range space is open in the domain space is more efficient than using basis element or raw open set in the range space. In addition, the subbasis element for the product topology on \(\prod X_{\alpha}\) has the form \(\pi_{\beta}^{-1}(U_{\beta})\) with \(U_{\beta}\) being a single coordinate component and open in \(X_{\beta}\). This is the clue of the proof.
For all \(\beta \in J\) and arbitrary open set \(U_{\beta}\) in \(X_{\beta}\), we have \(f_{\beta}^{-1}(U_{\beta}) = f^{-1} \circ \pi_{\beta}^{-1}(U_{\beta})\). Because \(f_{\beta}\) is continuous and \(U_{\beta}\) is open, \(f_{\beta}^{-1}(U_{\beta})\) is open. In addition, \(\pi_{\beta}^{-1}(U_{\beta})\) is an arbitrary subbasis element for \(\prod X_{\alpha}\) with the product topology, whose pre-image under \(f\) is just the open set \(f_{\beta}^{-1}(U_{\beta})\), therefore \(f\) is continuous.
Remark: Part b) of this theorem really depends on the adopted topology for \(\prod X_{\alpha}\), which can be understood as below.
At first, we will show that for all \(\vect{U} = \prod U_{\alpha}\) being a subset of \(\prod X_{\alpha}\), \(f^{-1}(\vect{U}) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\).
For all \(x \in f^{-1}(\vect{U})\), because \(f(x) \in \vect{U}\), then for all \(\alpha \in J\), \(f_{\alpha}(x) \in U_{\alpha}\), hence \(x \in \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\) and \(f^{-1}(\vect{U}) \subset \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\).
On the other hand, for all \(x \in \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\), we have for all \(\alpha \in J\), \(f_{\alpha}(x) \in U_{\alpha}\). Therefore, \(f(x) \in \vect{U}\) and \(x \in f^{-1}(\vect{U})\). Hence \(\bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha}) \subset f^{-1}(\vect{U})\).
Next, if we assign the product topology to \(\prod X_{\alpha}\), for any \(\vect{U} = \prod U_{\alpha}\) with \(U_{\alpha}\) open in \(X_{\alpha}\) and only a finite number of them not equal to \(X_{\alpha}\), it is a basis element of the product topology. Let the set of all indices with which \(U_{\alpha} \neq X_{\alpha}\) be \(\{\alpha_1, \cdots, \alpha_n\}\) and also notice that when \(U_{\alpha} = X_{\alpha}\), \(f_{\alpha}^{-1}(U_{\alpha}) = A\), we have
\[
f^{-1}(\vect{U}) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha}) = \bigcap_{i=1}^n f_{\alpha_i}^{-1}(U_{\alpha_i}),
\tag{*}
\label{eq:intersection}
\]
where those \(f_{\alpha}^{-1}(U_{\alpha})\) with \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\) do not contribute to the intersection. This indicates that \(f^{-1}(\vect{U})\) is a finite intersection of open sets which is still open. Hence \(f\) is continuous.
However, if the box topology is adopted for \(\prod X_{\alpha}\), qualitatively speaking, because the topology for the range space becomes finer, according to our previous post, it makes a function to be continuous more difficult. Specifically in this theorem, \(f^{-1}(\vect{U})\) in \eqref{eq:intersection} can be an intersection of infinite number of open sets \(U_{\alpha}\) not equal to \(X_{\alpha}\). Thus \(f^{-1}(\vect{U})\) may not be open anymore.
After understanding this point, it is not difficult to construct a counter example for part b) as below.
Let \(f: \mathbb{R} \rightarrow \mathbb{R}^{\omega}\) be defined as \(f(t) = (t, t, \cdots)\). Select a basis element \(\vect{U}\) in \(\mathbb{R}^{\omega}\) such that the intersection of all its coordinate components is not open. For example, \(\vect{U} = \prod_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n})\), which is a neighborhood of \(f(0) = (0, 0, \cdots)\).
For any basis element \((a, b)\) in \(\mathbb{R}\) containing \(0\), with \(a < 0\) and \(b > 0\), by letting \(\delta = \min\{-a, b\}\), we have \((-\delta, \delta) \subset (a, b)\) and \(0 \in (-\delta, \delta)\). The image of \((-\delta, \delta)\) under \(f\) is \(\prod_{n=1}^{\infty} (-\delta, \delta)\). Then there exist an \(n_0 \in \mathbb{Z}_+\) such that \((-\delta, \delta)\) is not contained in \((-\frac{1}{n_0}, \frac{1}{n_0})\). Therefore, \(\pi_{n_0}(f((-\delta, \delta)))\) is not contained in \(\pi_{n_0}(\vect{U})\) and \(\pi_{n_0}(f((a, b)))\) is not contained in \(\pi_{n_0}(\vect{U})\). Hence the image of \((a, b)\) under \(f\) is not contained in \(\vect{U}\). This contradicts Theorem 18.1 (4) and \(f\) is not continuous.
James Munkres Topology: Theorem 19.6的更多相关文章
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- Help Me Escape ZOJ - 3640
Background If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth ...
- python学习day11 函数Ⅲ (内置函数与lambda表达式)
函数Ⅲ(内置函数&lambda表达式) 1.函数小高级 函数可以当做变量来使用: def func(): print(123) func_list = [func, func, func] # ...
- PHP之道 - php各方面的知识汇总
看到一个PHP的知识各方面的汇总,写的很有借鉴意义,搬过来了 转自: https://laravel-china.github.io/php-the-right-way/ 欢迎阅读 其他语言版本 参与 ...
- 2017-12-19python全栈9期第四天第二节之列表的增删查改之正向排序和倒向排序和反转
#!/user/bin/python# -*- coding:utf-8 -*-li = [3,5,6546,6,8,324,2,1,34,5,6,7]# li.sort() #正向# print(l ...
- Java多线程:向线程传递参数的三种方法
在传统的同步开发模式下,当我们调用一个函数时,通过这个函数的参数将数据传入,并通过这个函数的返回值来返回最终的计算结果.但在多线程的异步开发模式下,数据的传递和返回和同步开发模式有很大的区别.由于线程 ...
- JAVA关于字符串&&字符数组处理的小题目
JAVA关于字符串&&字符数组的小题目 第二题:分析以下需求,并用代码实现 1.键盘录入一个大字符串,再录入一个小字符串 2.统计小字符串在大字符串中出现的次数 3.代码运行打印格式: ...
- 33. Springboot 系列 原生方式引入Redis,非RedisTemplate
0.pom.xml <dependency> <groupId>redis.clients</groupId> <artifactId>jedis&l ...
- 自定义border 为 dashed 时的虚线间距
li{ width: 100%; height: 3px; background-image: linear-gradient(to right, #009a61 0%, #009a61 50%, t ...
- webapp中绝对定位/固定定位与虚拟键盘冲突的问题
$('body,html').height(document.body.clientHeight); 进入页面的时候就把高度固定住,这样虚拟键盘打开页面高度不会变化,你的布局也不会乱. 测试有效. 当 ...
- Nmpy函数总结
函数和方法method总览 这是个Numpy函数和方法分类排列目录. 创建数组 arange, array, copy, empty, empty_like, eye, fromfile, fromf ...