James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation
\[
f(a) = (f_{\alpha}(a))_{\alpha \in J},
\]
where \(f_{\alpha}: A \rightarrow X_{\alpha}\) for each \(\alpha\). Let \(\prod X_{\alpha}\) have the product topology. Then the function \(f\) is continuous if and only if each function \(f_{\alpha}\) is continuous.
Comment: This is an extension of Theorem 18.4, where only two component spaces are involved.
Proof: a) First, we prove the projection map is continuous, which is defined on the Cartesian space constructed from a \(J\)-tuple of component spaces .
For all \(\beta \in J\), let \(\pi_{\beta}: \prod X_{\alpha} \rightarrow X_{\beta}\) be the projection map. For arbitrary open set \(V_{\beta}\) in \(X_{\beta}\), its pre-image under \(\pi_{\beta}\) is \(\pi_{\beta}^{-1}(V_{\beta})\), which is a subbasis element for the product topology on \(\prod X_{\alpha}\). Therefore, \(\pi_{\beta}^{-1}(V_{\beta})\) is open and the projection map \(\pi_{\beta}\) is continuous.
Next, we notice that for all \(\alpha \in J\), the coordinate function \(f_{\alpha}: A \rightarrow X_{\alpha}\) is a composition of the two continuous functions \(f\) and \(\pi_{\alpha}\), i.e. \(f_{\alpha} = \pi_{\alpha} \circ f\). Then according to Theorem 18.2 (c), \(f_{\alpha}\) is continuous.
Remark: Because the box topology is finer than the product topology, the projection map is also continuous when the box topology is adopted for \(\prod X_{\alpha}\). Therefore, this part of the theorem is true for both product topology and box topology.
b) Analysis: To prove the continuity of a function, showing that the pre-image of any subbasis element in the range space is open in the domain space is more efficient than using basis element or raw open set in the range space. In addition, the subbasis element for the product topology on \(\prod X_{\alpha}\) has the form \(\pi_{\beta}^{-1}(U_{\beta})\) with \(U_{\beta}\) being a single coordinate component and open in \(X_{\beta}\). This is the clue of the proof.
For all \(\beta \in J\) and arbitrary open set \(U_{\beta}\) in \(X_{\beta}\), we have \(f_{\beta}^{-1}(U_{\beta}) = f^{-1} \circ \pi_{\beta}^{-1}(U_{\beta})\). Because \(f_{\beta}\) is continuous and \(U_{\beta}\) is open, \(f_{\beta}^{-1}(U_{\beta})\) is open. In addition, \(\pi_{\beta}^{-1}(U_{\beta})\) is an arbitrary subbasis element for \(\prod X_{\alpha}\) with the product topology, whose pre-image under \(f\) is just the open set \(f_{\beta}^{-1}(U_{\beta})\), therefore \(f\) is continuous.
Remark: Part b) of this theorem really depends on the adopted topology for \(\prod X_{\alpha}\), which can be understood as below.
At first, we will show that for all \(\vect{U} = \prod U_{\alpha}\) being a subset of \(\prod X_{\alpha}\), \(f^{-1}(\vect{U}) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\).
For all \(x \in f^{-1}(\vect{U})\), because \(f(x) \in \vect{U}\), then for all \(\alpha \in J\), \(f_{\alpha}(x) \in U_{\alpha}\), hence \(x \in \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\) and \(f^{-1}(\vect{U}) \subset \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\).
On the other hand, for all \(x \in \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha})\), we have for all \(\alpha \in J\), \(f_{\alpha}(x) \in U_{\alpha}\). Therefore, \(f(x) \in \vect{U}\) and \(x \in f^{-1}(\vect{U})\). Hence \(\bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha}) \subset f^{-1}(\vect{U})\).
Next, if we assign the product topology to \(\prod X_{\alpha}\), for any \(\vect{U} = \prod U_{\alpha}\) with \(U_{\alpha}\) open in \(X_{\alpha}\) and only a finite number of them not equal to \(X_{\alpha}\), it is a basis element of the product topology. Let the set of all indices with which \(U_{\alpha} \neq X_{\alpha}\) be \(\{\alpha_1, \cdots, \alpha_n\}\) and also notice that when \(U_{\alpha} = X_{\alpha}\), \(f_{\alpha}^{-1}(U_{\alpha}) = A\), we have
\[
f^{-1}(\vect{U}) = \bigcap_{\alpha \in J} f_{\alpha}^{-1}(U_{\alpha}) = \bigcap_{i=1}^n f_{\alpha_i}^{-1}(U_{\alpha_i}),
\tag{*}
\label{eq:intersection}
\]
where those \(f_{\alpha}^{-1}(U_{\alpha})\) with \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\) do not contribute to the intersection. This indicates that \(f^{-1}(\vect{U})\) is a finite intersection of open sets which is still open. Hence \(f\) is continuous.
However, if the box topology is adopted for \(\prod X_{\alpha}\), qualitatively speaking, because the topology for the range space becomes finer, according to our previous post, it makes a function to be continuous more difficult. Specifically in this theorem, \(f^{-1}(\vect{U})\) in \eqref{eq:intersection} can be an intersection of infinite number of open sets \(U_{\alpha}\) not equal to \(X_{\alpha}\). Thus \(f^{-1}(\vect{U})\) may not be open anymore.
After understanding this point, it is not difficult to construct a counter example for part b) as below.
Let \(f: \mathbb{R} \rightarrow \mathbb{R}^{\omega}\) be defined as \(f(t) = (t, t, \cdots)\). Select a basis element \(\vect{U}\) in \(\mathbb{R}^{\omega}\) such that the intersection of all its coordinate components is not open. For example, \(\vect{U} = \prod_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n})\), which is a neighborhood of \(f(0) = (0, 0, \cdots)\).
For any basis element \((a, b)\) in \(\mathbb{R}\) containing \(0\), with \(a < 0\) and \(b > 0\), by letting \(\delta = \min\{-a, b\}\), we have \((-\delta, \delta) \subset (a, b)\) and \(0 \in (-\delta, \delta)\). The image of \((-\delta, \delta)\) under \(f\) is \(\prod_{n=1}^{\infty} (-\delta, \delta)\). Then there exist an \(n_0 \in \mathbb{Z}_+\) such that \((-\delta, \delta)\) is not contained in \((-\frac{1}{n_0}, \frac{1}{n_0})\). Therefore, \(\pi_{n_0}(f((-\delta, \delta)))\) is not contained in \(\pi_{n_0}(\vect{U})\) and \(\pi_{n_0}(f((a, b)))\) is not contained in \(\pi_{n_0}(\vect{U})\). Hence the image of \((a, b)\) under \(f\) is not contained in \(\vect{U}\). This contradicts Theorem 18.1 (4) and \(f\) is not continuous.
James Munkres Topology: Theorem 19.6的更多相关文章
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- Batch Normalization原理
Batch Normalization导读 博客转载自:https://blog.csdn.net/malefactor/article/details/51476961 作者: 张俊林 为什么深度神 ...
- Nginx 进程间如何共享内存
L:37 Nginx 针对多进程用的是自旋锁(占用共享内存时间比较短的情况下否则可能会影响性能)注:自旋锁是不停的请求共享内存 而原先的信号量是等待占用者释放后通知等待的进程
- Mysql注入小tips --持续更新中
学习Web安全好几年了,接触最多的是Sql注入,一直最不熟悉的也是Sql注入.OWASP中,Sql注入危害绝对是Top1.花了一点时间研究了下Mysql类型的注入. 文章中的tips将会持续更新,先说 ...
- spring security oauth2 client_credentials模
spring security oauth2 client_credentials模 https://www.jianshu.com/p/1c3eea71410e 序 本文主要简单介绍一下spring ...
- NOI真题记录
NOI2001 食物链,拓展域并查集. 炮兵阵地,棋盘状压DP. NOI2002 银河英雄传说,kruskal重构树/带权并查集. 贪吃的九头龙,树形DP. NOI2003 逃学的小孩,树形DP,二次 ...
- FreeNAS:创建 CIFS 匿名共享
第一部分:数据集权限设定 浏览器访问 FreeNAS 系统的 WebGUI 管理界面,点选 “Storage” 存储图标打开存储选项卡,在卷列表中点选用于匿名共享的数据集,如有需要,也可以自行创建新的 ...
- 时间序列分析模型——ARIMA模型
时间序列分析模型——ARIMA模型 一.研究目的 传统的经济计量方法是以经济理论为基础来描述变量关系的模型.但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左 ...
- MySQL_列值为null对索引的影响_实践
一.首先看一个我在某公众号看到的一个关于数据库优化的举措 二.如果where子句中查询的列执行了 “is null” 或者 “is not null” 或者 “<=> null” 会不会使 ...
- django和celery结合应用
django+celery项目结构 - project_name - app01 - __init__.py - admin.py - views.py - modes.py - tasks.py # ...
- 分布式监控系统开发【day38】:主机存活检测程序解析(七)
一.目录结构 二.入口 1.文件MonitorServer.py import os import sys if __name__ == "__main__": os.enviro ...