[物理学与PDEs]第2章第4节 激波 4.1 间断连接条件
1. 守恒律方程 $$\bex \cfrac{\p f}{\p t}+\cfrac{\p q}{\p x}=0 \eex$$ 在间断线上应满足 ``间断连接条件'': $$\bex [f]\cfrac{\rd x}{\rd t}=[q]. \eex$$
2. 对一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }u}&=\rho Fu, \eea \eeex$$ 其间断连接条件为 $$\beex \bea [\rho]\cfrac{\rd x}{\rd t}&=[\rho u],\\ [\rho u]\cfrac{\rd x}{\rd t}&=[\rho u^2+p],\\ \sez{\rho e+\cfrac{1}{2}\rho u^2}\cfrac{\rd x}{\rd t} &=\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}u}. \eea \eeex$$ 此称为 Rankine-Hugoniot (R.H.) 条件.
3. 设 $U=\cfrac{\rd x}{\rd t}$ 为间断的传播速度, 记 $$\bex v_\pm=u_\pm-U, \eex$$ 则 R.H. 条件可化为 $$\beex \bea \rho_-v_-&=\rho_+v_+,\\ \rho_-v_-^2+p_-&= \rho_+v_+^2+p_+,\\ \sex{\rho_-e_-+\cfrac{1}{2}\rho_-v_-^2+p_-}v_-&=\sex{\rho_+e_++\cfrac{1}{2}\rho_+v_+^2+p_+}v_+. \eea \eeex$$
4. 记 $m=\rho_-v_-=\rho_+v_+$, 则
(1) 若 $m=0$, 则 $x=x(t)$ 为接触间断 (contact discontinuity), 此时, $$\bex v_-=v_+=0\ra u_+=u_-=U, \eex$$ 该间断线随流体一以同一速度运动, 无流体越过间断线.
(2) 若 $m\neq 0$, 则 $x=x(t)$ 为激波, 在越过激波时, 由 R.H. 条件可导出各热力学量应满足的方程. 比如 $$\bex H(\tau,p;\tau_0,p_0)\equiv e(\tau,p)-e_0(\tau,p) +\cfrac{1}{2}(p_0+p)(\tau-\tau_0)=0. \eex$$ 此称为 Hugoniot 方程或热力学激波条件 (只依赖于热力学量 $\tau$, $p$). 另外, $v_-$, $v_+$ 同号. 若同为负号, 则 $u_-,u_+<U$, 而流体自右向左越过激波, 而激波相对于流体来说向右运动, 称为右传播激波; 若同为负号, 则称为左传播激波 (书 P 134).
[物理学与PDEs]第2章第4节 激波 4.1 间断连接条件的更多相关文章
- [物理学与PDEs]第2章第4节 激波 4.2 熵条件
1. R.H. 条件仅仅给出了越过激波时的能量守恒定律, 即热力学第一定律; 但客观的流体运动过程还需满足热力学第二定律, 即越过激波是个熵增过程: $$\bex S_1>S_0\quad(0 ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
随机推荐
- es crul查询(一)
C:\Users\Administrator>elasticdump --input=D:\test --output=http://localhost:9200/logs_apipki_201 ...
- GDB调试指南-启动调试
前言 GDB(GNU Debugger)是UNIX及UNIX-like下的强大调试工具,可以调试ada, c, c++, asm, minimal, d, fortran, objective-c, ...
- sqlalchemy外键的一些东西
sqlalchemy中让MySQL支持中文字符 engine = create_engine("mysql+pymysql://root:mysql8@localhost/mysqltest ...
- Python开发【内置模块篇】os模块
1.当前路径及路径下的文件 os.getcwd():查看当前所在路径. >>> import os >>> os.getcwd() 'E:\\test' >& ...
- Linux下配置nfs并远程挂载实战探讨
简单介绍: nfs是网络文件系统,允许一个节点通过网络访问远程计算机的文件系统,远程文件系统可以被直接挂载到本地,文件操作和本地没有区别,如果是局域网的nfs那么io的性能也可以保证 nfs是Netw ...
- vue给不同环境配置不同打包命令
第1步:安装cross-env 1 npm i --save-dev cross-env 第2步:修改各环境下的参数 在config/目录下添加test.env.js.pre.env.js. 修改pr ...
- SQL CHECK 约束
SQL CHECK 约束 CHECK 约束用于限制列中的值的范围. 如果对单个列定义 CHECK 约束,那么该列只允许特定的值. 如果对一个表定义 CHECK 约束,那么此约束会在特定的列中对值进行限 ...
- vue.js sha256加密
sha256: 1.使用cnpm安装 :cnpm install js-sha256 2.然后在组件中methods定义方法,在调用 let sha256 = require("js-sha ...
- 如何基于Winform开发框架或混合框架基础上进行项目的快速开发
在开发项目的时候,我们为了提高速度和质量,往往不是白手起家,需要基于一定的基础上进行项目的快速开发,这样可以利用整个框架的生态基础模块,以及成熟统一的开发方式,可以极大提高我们开发的效率.本篇随笔就是 ...
- 小程序——返回上个页面触发事件(onUnload)
//页面销毁前--上传被提交的数据 onUnload:function(){ var _this=this; let updateStatus = wx.getStorageSync('UpdateS ...