1.  守恒律方程 $$\bex \cfrac{\p f}{\p t}+\cfrac{\p q}{\p x}=0 \eex$$ 在间断线上应满足 ``间断连接条件'': $$\bex [f]\cfrac{\rd x}{\rd t}=[q]. \eex$$

2.  对一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rho u^2+p }u}&=\rho Fu, \eea \eeex$$ 其间断连接条件为 $$\beex \bea [\rho]\cfrac{\rd x}{\rd t}&=[\rho u],\\ [\rho u]\cfrac{\rd x}{\rd t}&=[\rho u^2+p],\\ \sez{\rho e+\cfrac{1}{2}\rho u^2}\cfrac{\rd x}{\rd t} &=\sez{\sex{\rho e+\cfrac{1}{2}\rho u^2}u}. \eea \eeex$$ 此称为 Rankine-Hugoniot (R.H.) 条件.

3.  设 $U=\cfrac{\rd x}{\rd t}$ 为间断的传播速度, 记 $$\bex v_\pm=u_\pm-U, \eex$$ 则 R.H. 条件可化为 $$\beex \bea \rho_-v_-&=\rho_+v_+,\\ \rho_-v_-^2+p_-&= \rho_+v_+^2+p_+,\\ \sex{\rho_-e_-+\cfrac{1}{2}\rho_-v_-^2+p_-}v_-&=\sex{\rho_+e_++\cfrac{1}{2}\rho_+v_+^2+p_+}v_+. \eea \eeex$$

4.  记 $m=\rho_-v_-=\rho_+v_+$, 则

(1)  若 $m=0$, 则 $x=x(t)$ 为接触间断 (contact discontinuity), 此时, $$\bex v_-=v_+=0\ra u_+=u_-=U, \eex$$ 该间断线随流体一以同一速度运动, 无流体越过间断线.

(2)  若 $m\neq 0$, 则 $x=x(t)$ 为激波, 在越过激波时, 由 R.H. 条件可导出各热力学量应满足的方程. 比如 $$\bex H(\tau,p;\tau_0,p_0)\equiv e(\tau,p)-e_0(\tau,p) +\cfrac{1}{2}(p_0+p)(\tau-\tau_0)=0.  \eex$$ 此称为 Hugoniot 方程或热力学激波条件 (只依赖于热力学量 $\tau$, $p$). 另外, $v_-$, $v_+$ 同号. 若同为负号, 则 $u_-,u_+<U$, 而流体自右向左越过激波, 而激波相对于流体来说向右运动, 称为右传播激波; 若同为负号, 则称为左传播激波 (书 P 134).

[物理学与PDEs]第2章第4节 激波 4.1 间断连接条件的更多相关文章

  1. [物理学与PDEs]第2章第4节 激波 4.2 熵条件

    1.  R.H. 条件仅仅给出了越过激波时的能量守恒定律, 即热力学第一定律; 但客观的流体运动过程还需满足热力学第二定律, 即越过激波是个熵增过程: $$\bex S_1>S_0\quad(0 ...

  2. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  3. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  4. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  5. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  6. [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系

    5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...

  7. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  9. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

随机推荐

  1. 基于DataTables实现根据每个用户动态显示隐藏列,可排序

      前言 在后台管理系统开发中,难免会出现列数太多的情况,这里提供一个解决方案:用户设置显示哪些列,每个用户互不影响,并且可以根据用户的习惯设置列的排序. 1.演示 2.html代码说明 3.java ...

  2. Java基础——1 一切都是对象

  3. DB2批量插入性能对比

    import ibm_db import random import time first_names = '赵钱孙李周吴郑王冯陈褚卫蒋沈韩杨朱秦尤许何吕施张孔曹严华金魏' \ '陶姜戚谢邹喻柏水窦章 ...

  4. 通过ip查询自己电脑的共享文件夹

    查看电脑所有的共享文件或文件夹的三种方法如下: 方法一. 右键点击网上邻居,点击属性进入网上邻居属性页面. 选中本地连接,在窗口的左下方有详细信息,可以看到内网IP,记住IP地址. 直接在地址栏输入记 ...

  5. C. Maximal Intersection(STL)

    这道题,关键在于怎么求多个区间的交集,使用multiset就可以 分别将 r , l 存在不同的mutiset中. 然后,我们来看一下 是不是 交集的 l 是最大的, 交集的 r 是最小的 #incl ...

  6. 【vue】vue +element 搭建项目,mock模拟数据(纯干货)

    1.安装mockjs依赖 (c)npm install mockjs --save-dev 2.安装axios(Ajax) (c)npm install --save axios 3.项目目录 4.设 ...

  7. np.mgrid的用法

    功能:返回多维结构,常见的如2D图形,3D图形 np.mgrid[ 第1维,第2维 ,第3维 , …] 第n维的书写形式为: a:b:c c表示步长,为实数表示间隔:该为长度为[a,b),左开右闭 或 ...

  8. 问题记录2019-03-06(todo)

    RuntimeError: maximum recursion depth exceeded while calling a Python object

  9. TensorRT&Sample&Python[uff_custom_plugin]

    本文是基于TensorRT 5.0.2基础上,关于其内部的uff_custom_plugin例子的分析和介绍. 本例子展示如何使用cpp基于tensorrt python绑定和UFF解析器进行编写pl ...

  10. HTML/CSS 速写神器 Emmet语法

    Emmet 是高效.快速编写 HTML 和 CSS 代码的一种插件,如果还不了解,请戳Emmet — the essential toolkit for web-developers,再根据你使用的编 ...