这里是大数据小白系列,这是本系列的第二篇,介绍一下HDFS中SecondaryNameNode、单点失败(SPOF)、以及高可用(HA)等概念。

上一篇我们说到了大数据、分布式存储,以及HDFS中的一些基本概念,为了能更好的理解后续介绍的内容,这里先补充介绍一下NameNode到底是怎么存储元数据的。

首先,在启动的时候,将磁盘中的元数据文件读取到内存,后续所有变化将被直接写入内存,同时被写入一个叫Edit Log的磁盘文件。(如果你熟悉关系型数据库,这个Edit Log有点像Oracle Redo Log,这是题外话)。

Q: 为什么不把这些变化直接写到磁盘上的元数据中,使磁盘上的元数据保持最新呢?Edit Log是不是多此一举?

A: 这个主要是基于性能考虑,由于对Edit Log的写是“顺序写”(追加),对元数据的写是“随机写”,两者在磁盘上表现出来的性能有相当大的差异。有兴趣的同学可以搜索学习一下磁盘相关原理哦。

上面这个方案,带来了一些明显的副作用。

  • NameNode长期运行,不停地向Edit Log追加内容,导致它变得巨大无比。
  • NameNode在重启时,需要使用Edit Log更新元数据文件,当Edit Log太大时,这一步骤就会耗费很长的时间。

为了消除这些副作用,HDFS中引入了另外一个角色,SecondaryNameNode。

它定期(比如每小时)从NameNode上抓取Edit Log,使用它更新元数据文件,并把最新的元数据文件写回到NameNode。

说完了SecondaryNameNode的职责之后,大家应该明白,它并不是一个“备用NameNode”,其实这是典型的命名不当,它应该被命名成“Checkpoint NameNode”才比较恰当。

接下来我们来说说HDFS中的单点失败问题(SPOF, Single Point Of Failure),即,当NameNode掉线之后,整个HDFS集群就变得不可用了。为解决这个问题,Hadoop 2.0中真正引入了一个“备用NameNode”。

  • 对元数据的修改首先发生在NameNode,并被写入某个“共享位置”,备用NameNode将从该位置获取Edit Log。
  • DataNode节点们同时向两台NameNode汇报状态。

由于这两点,两台NameNode上的元数据将一直保持同步。这将保证当NameNode掉线后,用户可以立即切换到备用NameNode,系统将保持可用。

由于备用NameNode比较空闲(不用处理用户请求),系统又给它安排了另外一份工作——定期使用Edit Log更新元数据文件,也就是说它接手了SecondaryNameNode的工作。

所以,在HA环境中,我们就不再需要SecondaryNameNode了。

今天就到这里,下一篇准备介绍JournalNode、NameNode选举等概念,Cheers!


公众号“程序员杂书馆”,专注大数据,欢迎关注,每位关注者将获赠《Spark快速大数据分析》纸质书一本!

大数据小白系列——HDFS(2)的更多相关文章

  1. 大数据小白系列——HDFS(4)

    这里是大数据小白系列,这是本系列的第四篇,来看一个真实世界Hadoop集群的规模,以及我们为什么需要Hadoop Federation. 首先,我们先要来个直观的印象,这是你以为的Hadoop集群: ...

  2. 大数据小白系列——HDFS(3)

    这里是大数据小白系列,这是本系列的第三篇,介绍HDFS中NameNode选举,JournalNode等概念. 上一期我们说到了为解决NameNode(下称NN)单点失败问题,HDFS中使用了双NN的机 ...

  3. 大数据小白系列——HDFS(1)

    [注1:结尾有大福利!] [注2:想写一个大数据小白系列,介绍大数据生态系统中的主要成员,理解其原理,明白其用途,万一有用呢,对不对.] 大数据是什么?抛开那些高大上但笼统的说法,其实大数据说的是两件 ...

  4. 大数据小白系列——MR(1)

    一部编程发展史就是一部程序员偷懒史,MapReduce(下称MR)同样是程序员们用来偷懒的工具. 来了一份大数据,我们写了一个程序准备分析它,需要怎么做? 老式的处理方法不行,数据量太大时,所需的时间 ...

  5. 大数据小白系列 —— MapReduce流程的深入说明

    上一期我们介绍了MR的基本流程与概念,本期稍微深入了解一下这个流程,尤其是比较重要但相对较少被提及的Shuffling过程. Mapping 上期我们说过,每一个mapper进程接收并处理一块数据,这 ...

  6. 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机)

    引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用 ...

  7. 大数据学习系列之五 ----- Hive整合HBase图文详解

    引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环 ...

  8. 大数据学习系列之六 ----- Hadoop+Spark环境搭建

    引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...

  9. 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解

    引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...

随机推荐

  1. canvas 保存bitmap到本地

    File f = new File("/sdcard/DCIM/Camera/0.png"); FileOutputStream fos = null; try { fos = n ...

  2. 前端图片缓存之通过img标签加载GIF只能播放一次问题(转载)

    最近项目中要求再网页中插入一张gif图片,让用户每次到达该位置时动一次,所以我们就制作了一张只动一次的gif图片通过img标签引入.当用户进入该位置时,通过remove()清除图片然后重新append ...

  3. Ionic 2: ReferenceError: webpackJsonp is not defined

    I'm new to Ionic. I have started project with super template. But when I try to run the app in brows ...

  4. 【python】多进程共享变量

    有一个字典变量,需要在多个进程间共享 使用Manager, 下面是一个小例子. 注意使用json前需要将类型转换. #!/usr/bin/python # coding=utf-8 import js ...

  5. Web前端渗透测试技术小结(一)

    首先端正一下态度不可干违法的事 1.SQL注入测试 对于存在SQL注入的网页,使用SQL语句进行关联查询(仿照C/S模式)eg   http://www.foo.com/user.php?id=1 常 ...

  6. MongoDB----提升

    文档之间的联系 一对一:通过文档内嵌的形式体现一对一的关系 db.user.insert({name:"xiaoming",frind:{name:"xiahua&quo ...

  7. hiho1460 rmq模板题

    好久没做rmq的题了,今天写了一遍,感觉打表有点像区间dp /* 给定长为n的字符串,要求在字符串中选择k个字符, 选择的子系列字典序最小 因为选择k个字符,那么就是去掉n-k个字符 那么[1,n-k ...

  8. Allegro PCB Design GXL (legacy) 手动更改元器件引脚的网络

    Allegro PCB Design GXL (legacy) version 16.6-2015 1.菜单:Setup > User Preferences... 2.User Prefere ...

  9. C++ friend友元函数和友元类(转)

    一个类中可以有 public.protected.private 三种属性的成员,通过对象可以访问 public 成员,只有本类中的函数可以访问本类的 private 成员.现在,我们来介绍一种例外情 ...

  10. 步步为营101-同一个PCode下重复的OrderNumber重新排序

    USE [K2_WorkFlow_Test] GO /****** Object: StoredProcedure [dbo].[sp_UpdateBPM_DictionaryForOrderNumb ...