GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu.com/p/25071913。相比 Wasserstein GAN ,我们的 DCGAN 好像低了一个档次,但是我们伟大的教育家鲁迅先生说过:“合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下”,(依稀记得那大概是我 7 - 8 岁的时候,鲁迅先生依偎在我身旁,带着和蔼可亲切的口吻对我说的这句话,他当时还加了一句话,小伙子你要记住,如果一句名言,你不知道是谁说的,那就是鲁迅说的)。所以我们的基础还是要打好的, DCGAN 是我们的基础,有了 DCGAN 的代码经验,相信写起 Wasserstein GAN 就顺手很多,所以,我们接下来继续来研究我们的无约束条件 DCGAN。

在上一篇文章中,我们用 MNIST 手写字符训练 GAN,生成网络 G 生成了相对比较好的手写字符,这一次,我们换个数据集,用 CelebA 人脸数据集来训练我们的 GAN,相比于手写字符,人脸数据集的分布更加复杂多样,长头发短头发,黄种人黑种人,戴眼镜不戴眼镜,男人女人等等,看看我们的生成网络 G 能否成功的检验出人脸数据集的分布。

首先准备数据:从官网分享的百度云盘连接 https://pan.baidu.com/s/1eSNpdRG#list/path=%2FCelebA%2FImg 下载 img_align_celeba.zip,在 /home/your_name/TensorFlow/DCGAN/data 文件夹下解压,得到 img_align_celeba 文件夹,里面有 20600 张人脸图片,在 /home/your_name/TensorFlow/DCGAN/data 文件夹下新建 img_align_celeba_tfrecords 文件夹,用来存放 tfrecords 文件,然后,在 /home/your_name/TensorFlow/DCGAN/ 下新建 convert_data.py,编写如下的代码,把人脸图片转化成 tfrecords 形式:

import os
import time
from PIL import Image import tensorflow as tf # 将图片裁剪为 128 x 128
OUTPUT_SIZE = 128
# 图片通道数,3 表示彩色
DEPTH = 3 def _int64_feature(value):
return tf.train.Feature(int64_list = tf.train.Int64List(value = [value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list = tf.train.BytesList(value = [value])) def convert_to(data_path, name): """
Converts s dataset to tfrecords
""" rows = 64
cols = 64
depth = DEPTH
# 循环 12 次,产生 12 个 .tfrecords 文件
for ii in range(12):
writer = tf.python_io.TFRecordWriter(name + str(ii) + '.tfrecords')
# 每个 tfrecord 文件有 16384 个图片
for img_name in os.listdir(data_path)[ii*16384 : (ii+1)*16384]:
# 打开图片
img_path = data_path + img_name
img = Image.open(img_path)
# 设置裁剪参数
h, w = img.size[:2]
j, k = (h - OUTPUT_SIZE) / 2, (w - OUTPUT_SIZE) / 2
box = (j, k, j + OUTPUT_SIZE, k+ OUTPUT_SIZE)
# 裁剪图片
img = img.crop(box = box)
# image resize
img = img.resize((rows,cols))
# 转化为字节
img_raw = img.tobytes()
# 写入到 Example
example = tf.train.Example(features = tf.train.Features(feature = {
'height': _int64_feature(rows),
'width': _int64_feature(cols),
'depth': _int64_feature(depth),
'image_raw': _bytes_feature(img_raw)}))
writer.write(example.SerializeToString())
writer.close() if __name__ == '__main__': current_dir = os.getcwd()
data_path = current_dir + '/data/img_align_celeba/'
name = current_dir + '/data/img_align_celeba_tfrecords/train'
start_time = time.time() print('Convert start')
print('\n' * 2) convert_to(data_path, name) print('\n' * 2)
print('Convert done, take %.2f seconds' % (time.time() - start_time))

运行之后,在 /home/your_name/TensorFlow/DCGAN/data/img_align_celeba_tfrecords/ 下会产生 12 个 .tfrecords 文件,这就是我们要的数据格式。

数据准备好之后,根据前面的经验,我们来写无约束条件的 DCGAN 代码,在 /home/your_name/TensorFlow/DCGAN/ 新建 none_cond_DCGAN.py 文件敲写代码,为了简便起见,代码中没有加注释并且把所有的代码总结到一个代码中,从代码中可以看到,我们自己写了一个 batch_norm 层,解决了 evaluation 函数中 is_train = False 的问题,并且可以断点续训练(只需要将开头的 LOAD_MODEL 设置为 True);此外该程序在开头采用很多的宏定义,可以方便的改为 tf.app.flags 定义的命令行参数,进而在命令行终端进行训练,还可以进行类的拓展,例如:

class DCGAN(object):
def __init__(self):
self.BATCH_SIZE = 64
...
def bias(self):
... ...

关于类的拓展,这里不做过多说明。

在 none_cond_DCGAN.py 文件中敲写如下代码:

import os
import numpy as np
import scipy.misc
import tensorflow as tf BATCH_SIZE = 64
OUTPUT_SIZE = 64
GF = 64 # Dimension of G filters in first conv layer. default [64]
DF = 64 # Dimension of D filters in first conv layer. default [64]
Z_DIM = 100
IMAGE_CHANNEL = 3
LR = 0.0002 # Learning rate
EPOCH = 5
LOAD_MODEL = False # Whether or not continue train from saved model。
TRAIN = True
CURRENT_DIR = os.getcwd() def bias(name, shape, bias_start = 0.0, trainable = True): dtype = tf.float32
var = tf.get_variable(name, shape, tf.float32, trainable = trainable,
initializer = tf.constant_initializer(
bias_start, dtype = dtype))
return var def weight(name, shape, stddev = 0.02, trainable = True): dtype = tf.float32
var = tf.get_variable(name, shape, tf.float32, trainable = trainable,
initializer = tf.random_normal_initializer(
stddev = stddev, dtype = dtype))
return var def fully_connected(value, output_shape, name = 'fully_connected', with_w = False): shape = value.get_shape().as_list() with tf.variable_scope(name):
weights = weight('weights', [shape[1], output_shape], 0.02)
biases = bias('biases', [output_shape], 0.0) if with_w:
return tf.matmul(value, weights) + biases, weights, biases
else:
return tf.matmul(value, weights) + biases def lrelu(x, leak=0.2, name = 'lrelu'): with tf.variable_scope(name):
return tf.maximum(x, leak*x, name = name) def relu(value, name = 'relu'):
with tf.variable_scope(name):
return tf.nn.relu(value) def deconv2d(value, output_shape, k_h = 5, k_w = 5, strides =[1, 2, 2, 1],
name = 'deconv2d', with_w = False): with tf.variable_scope(name):
weights = weight('weights',
[k_h, k_w, output_shape[-1], value.get_shape()[-1]])
deconv = tf.nn.conv2d_transpose(value, weights,
output_shape, strides = strides)
biases = bias('biases', [output_shape[-1]])
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
if with_w:
return deconv, weights, biases
else:
return deconv def conv2d(value, output_dim, k_h = 5, k_w = 5,
strides =[1, 2, 2, 1], name = 'conv2d'): with tf.variable_scope(name):
weights = weight('weights',
[k_h, k_w, value.get_shape()[-1], output_dim])
conv = tf.nn.conv2d(value, weights, strides = strides, padding = 'SAME')
biases = bias('biases', [output_dim])
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape()) return conv def conv_cond_concat(value, cond, name = 'concat'): """
Concatenate conditioning vector on feature map axis.
"""
value_shapes = value.get_shape().as_list()
cond_shapes = cond.get_shape().as_list() with tf.variable_scope(name):
return tf.concat(3,
[value, cond * tf.ones(value_shapes[0:3] + cond_shapes[3:])]) def batch_norm(value, is_train = True, name = 'batch_norm',
epsilon = 1e-5, momentum = 0.9): with tf.variable_scope(name): ema = tf.train.ExponentialMovingAverage(decay = momentum)
shape = value.get_shape().as_list()[-1]
beta = bias('beta', [shape], bias_start = 0.0)
gamma = bias('gamma', [shape], bias_start = 1.0) if is_train: batch_mean, batch_variance = tf.nn.moments(
value, [0, 1, 2], name = 'moments') moving_mean = bias('moving_mean', [shape], 0.0, False)
moving_variance = bias('moving_variance', [shape], 1.0, False) ema_apply_op = ema.apply([batch_mean, batch_variance]) assign_mean = moving_mean.assign(ema.average(batch_mean))
assign_variance = \
moving_variance.assign(ema.average(batch_variance)) with tf.control_dependencies([ema_apply_op]):
mean, variance = \
tf.identity(batch_mean), tf.identity(batch_variance) with tf.control_dependencies([assign_mean, assign_variance]):
return tf.nn.batch_normalization(
value, mean, variance, beta, gamma, 1e-5) else:
mean = bias('moving_mean', [shape], 0.0, False)
variance = bias('moving_variance', [shape], 1.0, False) return tf.nn.batch_normalization(
value, mean, variance, beta, gamma, epsilon) def generator(z, is_train = True, name = 'generator'): with tf.name_scope(name): s2, s4, s8, s16 = \
OUTPUT_SIZE/2, OUTPUT_SIZE/4, OUTPUT_SIZE/8, OUTPUT_SIZE/16 h1 = tf.reshape(fully_connected(z, GF*8*s16*s16, 'g_fc1'),
[-1, s16, s16, GF*8], name = 'reshap')
h1 = relu(batch_norm(h1, name = 'g_bn1', is_train = is_train)) h2 = deconv2d(h1, [BATCH_SIZE, s8, s8, GF*4], name = 'g_deconv2d1')
h2 = relu(batch_norm(h2, name = 'g_bn2', is_train = is_train)) h3 = deconv2d(h2, [BATCH_SIZE, s4, s4, GF*2], name = 'g_deconv2d2')
h3 = relu(batch_norm(h3, name = 'g_bn3', is_train = is_train)) h4 = deconv2d(h3, [BATCH_SIZE, s2, s2, GF*1], name = 'g_deconv2d3')
h4 = relu(batch_norm(h4, name = 'g_bn4', is_train = is_train)) h5 = deconv2d(h4, [BATCH_SIZE, OUTPUT_SIZE, OUTPUT_SIZE, 3],
name = 'g_deconv2d4') return tf.nn.tanh(h5) def discriminator(image, reuse = False, name = 'discriminator'): with tf.name_scope(name): if reuse:
tf.get_variable_scope().reuse_variables() h0 = lrelu(conv2d(image, DF, name='d_h0_conv'), name = 'd_h0_lrelu')
h1 = lrelu(batch_norm(conv2d(h0, DF*2, name='d_h1_conv'),
name = 'd_h1_bn'), name = 'd_h1_lrelu')
h2 = lrelu(batch_norm(conv2d(h1, DF*4, name='d_h2_conv'),
name = 'd_h2_bn'), name = 'd_h2_lrelu')
h3 = lrelu(batch_norm(conv2d(h2, DF*8, name='d_h3_conv'),
name = 'd_h3_bn'), name = 'd_h3_lrelu')
h4 = fully_connected(tf.reshape(h3, [BATCH_SIZE, -1]), 1, 'd_h4_fc') return tf.nn.sigmoid(h4), h4 def sampler(z, is_train = False, name = 'sampler'): with tf.name_scope(name): tf.get_variable_scope().reuse_variables()
return generator(z, is_train = is_train) def read_and_decode(filename_queue): """
read and decode tfrecords
""" reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example,features = {
'image_raw':tf.FixedLenFeature([], tf.string)})
image = tf.decode_raw(features['image_raw'], tf.uint8) image = tf.reshape(image, [OUTPUT_SIZE, OUTPUT_SIZE, 3])
image = tf.cast(image, tf.float32)
image = image / 255.0 return image def inputs(data_dir, batch_size, name = 'input'): """
Reads input data num_epochs times.
""" with tf.name_scope(name):
filenames = [
os.path.join(data_dir,'train%d.tfrecords' % ii) for ii in range(12)]
filename_queue = tf.train.string_input_producer(filenames) image = read_and_decode(filename_queue) images = tf.train.shuffle_batch([image], batch_size = batch_size,
num_threads = 4,
capacity = 20000 + 3 * batch_size,
min_after_dequeue = 20000)
return images def save_images(images, size, path): """
Save the samples images
The best size number is
int(max(sqrt(image.shape[1]),sqrt(image.shape[1]))) + 1
"""
img = (images + 1.0) / 2.0
h, w = img.shape[1], img.shape[2]
merge_img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
merge_img[j*h:j*h+h, i*w:i*w+w, :] = image return scipy.misc.imsave(path, merge_img) def train(): global_step = tf.Variable(0, name = 'global_step', trainable = False) train_dir = CURRENT_DIR + '/logs_without_condition/'
data_dir = CURRENT_DIR + '/data/img_align_celeba_tfrecords/' images = inputs(data_dir, BATCH_SIZE) z = tf.placeholder(tf.float32, [None, Z_DIM], name='z') G = generator(z)
D, D_logits = discriminator(images)
samples = sampler(z)
D_, D_logits_ = discriminator(G, reuse = True) d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(D_logits, tf.ones_like(D)))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(D_logits_, tf.zeros_like(D_)))
d_loss = d_loss_real + d_loss_fake
g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(D_logits_, tf.ones_like(D_))) z_sum = tf.histogram_summary('z', z)
d_sum = tf.histogram_summary('d', D)
d__sum = tf.histogram_summary('d_', D_)
G_sum = tf.image_summary('G', G) d_loss_real_sum = tf.scalar_summary('d_loss_real', d_loss_real)
d_loss_fake_sum = tf.scalar_summary('d_loss_fake', d_loss_fake)
d_loss_sum = tf.scalar_summary('d_loss', d_loss)
g_loss_sum = tf.scalar_summary('g_loss', g_loss) g_sum = tf.merge_summary([z_sum, d__sum, G_sum, d_loss_fake_sum, g_loss_sum])
d_sum = tf.merge_summary([z_sum, d_sum, d_loss_real_sum, d_loss_sum]) t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'd_' in var.name]
g_vars = [var for var in t_vars if 'g_' in var.name] saver = tf.train.Saver() d_optim = tf.train.AdamOptimizer(LR, beta1 = 0.5) \
.minimize(d_loss, var_list = d_vars, global_step = global_step)
g_optim = tf.train.AdamOptimizer(LR, beta1 = 0.5) \
.minimize(g_loss, var_list = g_vars, global_step = global_step) os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess = tf.InteractiveSession(config=config) writer = tf.train.SummaryWriter(train_dir, sess.graph) sample_z = np.random.uniform(-1, 1, size = (BATCH_SIZE, Z_DIM)) coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess = sess, coord = coord)
init = tf.initialize_all_variables()
sess.run(init) start = 0
if LOAD_MODEL:
print(" [*] Reading checkpoints...")
ckpt = tf.train.get_checkpoint_state(train_dir) if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
saver.restore(sess, os.path.join(train_dir, ckpt_name))
global_step = ckpt.model_checkpoint_path.split('/')[-1]\
.split('-')[-1]
print('Loading success, global_step is %s' % global_step) start = int(global_step) for epoch in range(EPOCH): batch_idxs = 3072 if epoch:
start = 0 for idx in range(start, batch_idxs): batch_z = np.random.uniform(-1, 1, size = (BATCH_SIZE, Z_DIM)) _, summary_str = sess.run([d_optim, d_sum], feed_dict = {z: batch_z})
writer.add_summary(summary_str, idx+1) # Update G network
_, summary_str = sess.run([g_optim, g_sum], feed_dict = {z: batch_z})
writer.add_summary(summary_str, idx+1) # Run g_optim twice to make sure that d_loss does not go to zero
_, summary_str = sess.run([g_optim, g_sum], feed_dict = {z: batch_z})
writer.add_summary(summary_str, idx+1) errD_fake = d_loss_fake.eval({z: batch_z})
errD_real = d_loss_real.eval()
errG = g_loss.eval({z: batch_z})
if idx % 20 == 0:
print("[%4d/%4d] d_loss: %.8f, g_loss: %.8f" \
% (idx, batch_idxs, errD_fake+errD_real, errG)) if idx % 100 == 0:
sample = sess.run(samples, feed_dict = {z: sample_z})
samples_path = CURRENT_DIR + '/samples_without_condition/'
save_images(sample, [8, 8],
samples_path + \
'sample_%d_epoch_%d.png' % (epoch, idx)) print '\n'*2
print('=========== %d_epoch_%d.png save down ==========='
%(epoch, idx))
print '\n'*2 if (idx % 512 == 0) or (idx + 1 == batch_idxs):
checkpoint_path = os.path.join(train_dir,
'my_dcgan_tfrecords.ckpt')
saver.save(sess, checkpoint_path, global_step = idx+1)
print '********* model saved *********' print '******* start with %d *******' % start coord.request_stop()
coord.join(threads)
sess.close() def evaluate():
eval_dir = CURRENT_DIR + '/eval/' checkpoint_dir = CURRENT_DIR + '/logs_without_condition/' z = tf.placeholder(tf.float32, [None, Z_DIM], name='z') G = generator(z, is_train = False) sample_z1 = np.random.uniform(-1, 1, size=(BATCH_SIZE, Z_DIM))
sample_z2 = np.random.uniform(-1, 1, size=(BATCH_SIZE, Z_DIM))
sample_z3 = (sample_z1 + sample_z2) / 2
sample_z4 = (sample_z1 + sample_z3) / 2
sample_z5 = (sample_z2 + sample_z3) / 2 print("Reading checkpoints...")
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) saver = tf.train.Saver(tf.all_variables()) os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess = tf.InteractiveSession(config=config) if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
print('Loading success, global_step is %s' % global_step) eval_sess1 = sess.run(G, feed_dict = {z: sample_z1})
eval_sess2 = sess.run(G, feed_dict = {z: sample_z4})
eval_sess3 = sess.run(G, feed_dict = {z: sample_z3})
eval_sess4 = sess.run(G, feed_dict = {z: sample_z5})
eval_sess5 = sess.run(G, feed_dict = {z: sample_z2}) print(eval_sess3.shape) save_images(eval_sess1, [8, 8], eval_dir + 'eval_%d.png' % 1)
save_images(eval_sess2, [8, 8], eval_dir + 'eval_%d.png' % 2)
save_images(eval_sess3, [8, 8], eval_dir + 'eval_%d.png' % 3)
save_images(eval_sess4, [8, 8], eval_dir + 'eval_%d.png' % 4)
save_images(eval_sess5, [8, 8], eval_dir + 'eval_%d.png' % 5) sess.close() if __name__ == '__main__': if TRAIN:
train()
else:
evaluate()

完成后,运行代码,网络开始训练,大致需要 1~2 个小时,训练就可以完成,在训练的过程中,可以看出 sampler 采样的生成结果越来越好,最后得到了一个如下图所示的结果,由于人脸的数据分布比手写数据分布复杂多样,所以生成器不能完全抓住人脸的特征,下图所示的第 6 行第 7 列就是一个很糟糕的生成图像。

训练完成后,我们用 tensorboard 打开网络的 graph,看看经过我们的精心设计,网络结构变成了什么样子:

可以看出来,这次的结构图,比之前的顺眼多了,简直是处女座的福音啊有木有。

至此,我们完成了 DCGAN 的代码,下一篇文章,我们来说说 Caffe 那点事。

参考文献:

1. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/how_tos/reading_data/convert_to_records.py

2. https://github.com/carpedm20/DCGAN-tensorflow

不要怂,就是GAN (生成式对抗网络) (五):无约束条件的 GAN 代码与网络的 Graph的更多相关文章

  1. GAN生成式对抗网络(四)——SRGAN超高分辨率图片重构

    论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈 ...

  2. GAN生成式对抗网络(三)——mnist数据生成

    通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_dat ...

  3. GAN生成式对抗网络(一)——原理

    生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型 GAN包括两个核心模块. 1.生成器模块 --generator 2.判别器模块--de ...

  4. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  5. 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  6. 不要怂,就是GAN (生成式对抗网络) (二)

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  7. 不要怂,就是GAN (生成式对抗网络) (二):数据读取和操作

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  8. GAN生成式对抗网络(二)——tensorflow代码示例

    代码实现 当初学习时,主要学习的这个博客 https://xyang35.github.io/2017/08/22/GAN-1/ ,写的挺好的. 本文目的,用GAN实现最简单的例子,帮助认识GAN算法 ...

  9. 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN

    在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...

随机推荐

  1. jquery插件与扩展一

    要说jQuery 最成功的地方,我认为是它的可扩展性吸引了众多开发者为其开发插件,从而建立起了一个生态系统.这好比大公司们争相做平台一样,得平台者得天下.苹果,微软,谷歌等巨头,都有各自的平台及生态圈 ...

  2. macdown在mac OS 中的配置

    macdown 用命令行打开.md文件 执行两条命令即可. sudo echo "open -a MacDown \$*" > /usr/local/bin/macdown ...

  3. CentOS6.6 VSFTP服务器安装设置

    1:安装vsftpd    yum install vsftpd 2:关闭防火墙 service iptables stop 3:允许21端口通行 vi /etc/sysconfig/iptables ...

  4. map、reduce处理数据结构及常见案例

    随着三大前端框架和小程序的流行,MVVM大行其道,而其中的核心是 ViewModel 层,它就像是一个中转站(value converter),负责转换 Model 中的数据对象来让数据变得更容易管理 ...

  5. 【POJ】1935 Journey(树形dp)

    题目 传送门:QWQ 分析 凉凉. 答案是所有要经过的点到根所经过的边权和减去最大的边权. 代码 vector好慢啊 #include <cstdio> #include <vect ...

  6. Oracle Block Change Tracking功能(转)

    from:http://space.itpub.net/?uid-25744374-action-viewspace-itemid-732091 通过使用block change tracking功能 ...

  7. git备忘

    git checkout . 放弃本地修改

  8. gzip是一种数据格式,deflate是一种压缩算法

    gzip是一种数据格式,默认且目前仅使用deflate算法压缩data部分:deflate是一种压缩算法,是huffman编码的一种加强. deflate与gzip解压的代码几乎相同,可以合成一块代码 ...

  9. java过滤关键词

    敏感词.文字过滤是一个网站必不可少的功能,如何设计一个好的.高效的过滤算法是非常有必要的.前段时间我一个朋友(马上毕业,接触编程不久)要我帮他看一个文字过滤的东西,它说检索效率非常慢.我把它程序拿过来 ...

  10. linux nohup命令使程序在后台运行的方法

    在linux操作系统中从后台一直运行某个程序的方法,就是使用nohup命令了. Unix/Linux下一般比如想让某个程序在后台运行,很多都是使用 & 在程序结尾来让程序自动运行. 比如要运行 ...