GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu.com/p/25071913。相比 Wasserstein GAN ,我们的 DCGAN 好像低了一个档次,但是我们伟大的教育家鲁迅先生说过:“合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下”,(依稀记得那大概是我 7 - 8 岁的时候,鲁迅先生依偎在我身旁,带着和蔼可亲切的口吻对我说的这句话,他当时还加了一句话,小伙子你要记住,如果一句名言,你不知道是谁说的,那就是鲁迅说的)。所以我们的基础还是要打好的, DCGAN 是我们的基础,有了 DCGAN 的代码经验,相信写起 Wasserstein GAN 就顺手很多,所以,我们接下来继续来研究我们的无约束条件 DCGAN。

在上一篇文章中,我们用 MNIST 手写字符训练 GAN,生成网络 G 生成了相对比较好的手写字符,这一次,我们换个数据集,用 CelebA 人脸数据集来训练我们的 GAN,相比于手写字符,人脸数据集的分布更加复杂多样,长头发短头发,黄种人黑种人,戴眼镜不戴眼镜,男人女人等等,看看我们的生成网络 G 能否成功的检验出人脸数据集的分布。

首先准备数据:从官网分享的百度云盘连接 https://pan.baidu.com/s/1eSNpdRG#list/path=%2FCelebA%2FImg 下载 img_align_celeba.zip,在 /home/your_name/TensorFlow/DCGAN/data 文件夹下解压,得到 img_align_celeba 文件夹,里面有 20600 张人脸图片,在 /home/your_name/TensorFlow/DCGAN/data 文件夹下新建 img_align_celeba_tfrecords 文件夹,用来存放 tfrecords 文件,然后,在 /home/your_name/TensorFlow/DCGAN/ 下新建 convert_data.py,编写如下的代码,把人脸图片转化成 tfrecords 形式:

import os
import time
from PIL import Image import tensorflow as tf # 将图片裁剪为 128 x 128
OUTPUT_SIZE = 128
# 图片通道数,3 表示彩色
DEPTH = 3 def _int64_feature(value):
return tf.train.Feature(int64_list = tf.train.Int64List(value = [value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list = tf.train.BytesList(value = [value])) def convert_to(data_path, name): """
Converts s dataset to tfrecords
""" rows = 64
cols = 64
depth = DEPTH
# 循环 12 次,产生 12 个 .tfrecords 文件
for ii in range(12):
writer = tf.python_io.TFRecordWriter(name + str(ii) + '.tfrecords')
# 每个 tfrecord 文件有 16384 个图片
for img_name in os.listdir(data_path)[ii*16384 : (ii+1)*16384]:
# 打开图片
img_path = data_path + img_name
img = Image.open(img_path)
# 设置裁剪参数
h, w = img.size[:2]
j, k = (h - OUTPUT_SIZE) / 2, (w - OUTPUT_SIZE) / 2
box = (j, k, j + OUTPUT_SIZE, k+ OUTPUT_SIZE)
# 裁剪图片
img = img.crop(box = box)
# image resize
img = img.resize((rows,cols))
# 转化为字节
img_raw = img.tobytes()
# 写入到 Example
example = tf.train.Example(features = tf.train.Features(feature = {
'height': _int64_feature(rows),
'width': _int64_feature(cols),
'depth': _int64_feature(depth),
'image_raw': _bytes_feature(img_raw)}))
writer.write(example.SerializeToString())
writer.close() if __name__ == '__main__': current_dir = os.getcwd()
data_path = current_dir + '/data/img_align_celeba/'
name = current_dir + '/data/img_align_celeba_tfrecords/train'
start_time = time.time() print('Convert start')
print('\n' * 2) convert_to(data_path, name) print('\n' * 2)
print('Convert done, take %.2f seconds' % (time.time() - start_time))

运行之后,在 /home/your_name/TensorFlow/DCGAN/data/img_align_celeba_tfrecords/ 下会产生 12 个 .tfrecords 文件,这就是我们要的数据格式。

数据准备好之后,根据前面的经验,我们来写无约束条件的 DCGAN 代码,在 /home/your_name/TensorFlow/DCGAN/ 新建 none_cond_DCGAN.py 文件敲写代码,为了简便起见,代码中没有加注释并且把所有的代码总结到一个代码中,从代码中可以看到,我们自己写了一个 batch_norm 层,解决了 evaluation 函数中 is_train = False 的问题,并且可以断点续训练(只需要将开头的 LOAD_MODEL 设置为 True);此外该程序在开头采用很多的宏定义,可以方便的改为 tf.app.flags 定义的命令行参数,进而在命令行终端进行训练,还可以进行类的拓展,例如:

class DCGAN(object):
def __init__(self):
self.BATCH_SIZE = 64
...
def bias(self):
... ...

关于类的拓展,这里不做过多说明。

在 none_cond_DCGAN.py 文件中敲写如下代码:

import os
import numpy as np
import scipy.misc
import tensorflow as tf BATCH_SIZE = 64
OUTPUT_SIZE = 64
GF = 64 # Dimension of G filters in first conv layer. default [64]
DF = 64 # Dimension of D filters in first conv layer. default [64]
Z_DIM = 100
IMAGE_CHANNEL = 3
LR = 0.0002 # Learning rate
EPOCH = 5
LOAD_MODEL = False # Whether or not continue train from saved model。
TRAIN = True
CURRENT_DIR = os.getcwd() def bias(name, shape, bias_start = 0.0, trainable = True): dtype = tf.float32
var = tf.get_variable(name, shape, tf.float32, trainable = trainable,
initializer = tf.constant_initializer(
bias_start, dtype = dtype))
return var def weight(name, shape, stddev = 0.02, trainable = True): dtype = tf.float32
var = tf.get_variable(name, shape, tf.float32, trainable = trainable,
initializer = tf.random_normal_initializer(
stddev = stddev, dtype = dtype))
return var def fully_connected(value, output_shape, name = 'fully_connected', with_w = False): shape = value.get_shape().as_list() with tf.variable_scope(name):
weights = weight('weights', [shape[1], output_shape], 0.02)
biases = bias('biases', [output_shape], 0.0) if with_w:
return tf.matmul(value, weights) + biases, weights, biases
else:
return tf.matmul(value, weights) + biases def lrelu(x, leak=0.2, name = 'lrelu'): with tf.variable_scope(name):
return tf.maximum(x, leak*x, name = name) def relu(value, name = 'relu'):
with tf.variable_scope(name):
return tf.nn.relu(value) def deconv2d(value, output_shape, k_h = 5, k_w = 5, strides =[1, 2, 2, 1],
name = 'deconv2d', with_w = False): with tf.variable_scope(name):
weights = weight('weights',
[k_h, k_w, output_shape[-1], value.get_shape()[-1]])
deconv = tf.nn.conv2d_transpose(value, weights,
output_shape, strides = strides)
biases = bias('biases', [output_shape[-1]])
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
if with_w:
return deconv, weights, biases
else:
return deconv def conv2d(value, output_dim, k_h = 5, k_w = 5,
strides =[1, 2, 2, 1], name = 'conv2d'): with tf.variable_scope(name):
weights = weight('weights',
[k_h, k_w, value.get_shape()[-1], output_dim])
conv = tf.nn.conv2d(value, weights, strides = strides, padding = 'SAME')
biases = bias('biases', [output_dim])
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape()) return conv def conv_cond_concat(value, cond, name = 'concat'): """
Concatenate conditioning vector on feature map axis.
"""
value_shapes = value.get_shape().as_list()
cond_shapes = cond.get_shape().as_list() with tf.variable_scope(name):
return tf.concat(3,
[value, cond * tf.ones(value_shapes[0:3] + cond_shapes[3:])]) def batch_norm(value, is_train = True, name = 'batch_norm',
epsilon = 1e-5, momentum = 0.9): with tf.variable_scope(name): ema = tf.train.ExponentialMovingAverage(decay = momentum)
shape = value.get_shape().as_list()[-1]
beta = bias('beta', [shape], bias_start = 0.0)
gamma = bias('gamma', [shape], bias_start = 1.0) if is_train: batch_mean, batch_variance = tf.nn.moments(
value, [0, 1, 2], name = 'moments') moving_mean = bias('moving_mean', [shape], 0.0, False)
moving_variance = bias('moving_variance', [shape], 1.0, False) ema_apply_op = ema.apply([batch_mean, batch_variance]) assign_mean = moving_mean.assign(ema.average(batch_mean))
assign_variance = \
moving_variance.assign(ema.average(batch_variance)) with tf.control_dependencies([ema_apply_op]):
mean, variance = \
tf.identity(batch_mean), tf.identity(batch_variance) with tf.control_dependencies([assign_mean, assign_variance]):
return tf.nn.batch_normalization(
value, mean, variance, beta, gamma, 1e-5) else:
mean = bias('moving_mean', [shape], 0.0, False)
variance = bias('moving_variance', [shape], 1.0, False) return tf.nn.batch_normalization(
value, mean, variance, beta, gamma, epsilon) def generator(z, is_train = True, name = 'generator'): with tf.name_scope(name): s2, s4, s8, s16 = \
OUTPUT_SIZE/2, OUTPUT_SIZE/4, OUTPUT_SIZE/8, OUTPUT_SIZE/16 h1 = tf.reshape(fully_connected(z, GF*8*s16*s16, 'g_fc1'),
[-1, s16, s16, GF*8], name = 'reshap')
h1 = relu(batch_norm(h1, name = 'g_bn1', is_train = is_train)) h2 = deconv2d(h1, [BATCH_SIZE, s8, s8, GF*4], name = 'g_deconv2d1')
h2 = relu(batch_norm(h2, name = 'g_bn2', is_train = is_train)) h3 = deconv2d(h2, [BATCH_SIZE, s4, s4, GF*2], name = 'g_deconv2d2')
h3 = relu(batch_norm(h3, name = 'g_bn3', is_train = is_train)) h4 = deconv2d(h3, [BATCH_SIZE, s2, s2, GF*1], name = 'g_deconv2d3')
h4 = relu(batch_norm(h4, name = 'g_bn4', is_train = is_train)) h5 = deconv2d(h4, [BATCH_SIZE, OUTPUT_SIZE, OUTPUT_SIZE, 3],
name = 'g_deconv2d4') return tf.nn.tanh(h5) def discriminator(image, reuse = False, name = 'discriminator'): with tf.name_scope(name): if reuse:
tf.get_variable_scope().reuse_variables() h0 = lrelu(conv2d(image, DF, name='d_h0_conv'), name = 'd_h0_lrelu')
h1 = lrelu(batch_norm(conv2d(h0, DF*2, name='d_h1_conv'),
name = 'd_h1_bn'), name = 'd_h1_lrelu')
h2 = lrelu(batch_norm(conv2d(h1, DF*4, name='d_h2_conv'),
name = 'd_h2_bn'), name = 'd_h2_lrelu')
h3 = lrelu(batch_norm(conv2d(h2, DF*8, name='d_h3_conv'),
name = 'd_h3_bn'), name = 'd_h3_lrelu')
h4 = fully_connected(tf.reshape(h3, [BATCH_SIZE, -1]), 1, 'd_h4_fc') return tf.nn.sigmoid(h4), h4 def sampler(z, is_train = False, name = 'sampler'): with tf.name_scope(name): tf.get_variable_scope().reuse_variables()
return generator(z, is_train = is_train) def read_and_decode(filename_queue): """
read and decode tfrecords
""" reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example,features = {
'image_raw':tf.FixedLenFeature([], tf.string)})
image = tf.decode_raw(features['image_raw'], tf.uint8) image = tf.reshape(image, [OUTPUT_SIZE, OUTPUT_SIZE, 3])
image = tf.cast(image, tf.float32)
image = image / 255.0 return image def inputs(data_dir, batch_size, name = 'input'): """
Reads input data num_epochs times.
""" with tf.name_scope(name):
filenames = [
os.path.join(data_dir,'train%d.tfrecords' % ii) for ii in range(12)]
filename_queue = tf.train.string_input_producer(filenames) image = read_and_decode(filename_queue) images = tf.train.shuffle_batch([image], batch_size = batch_size,
num_threads = 4,
capacity = 20000 + 3 * batch_size,
min_after_dequeue = 20000)
return images def save_images(images, size, path): """
Save the samples images
The best size number is
int(max(sqrt(image.shape[1]),sqrt(image.shape[1]))) + 1
"""
img = (images + 1.0) / 2.0
h, w = img.shape[1], img.shape[2]
merge_img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
merge_img[j*h:j*h+h, i*w:i*w+w, :] = image return scipy.misc.imsave(path, merge_img) def train(): global_step = tf.Variable(0, name = 'global_step', trainable = False) train_dir = CURRENT_DIR + '/logs_without_condition/'
data_dir = CURRENT_DIR + '/data/img_align_celeba_tfrecords/' images = inputs(data_dir, BATCH_SIZE) z = tf.placeholder(tf.float32, [None, Z_DIM], name='z') G = generator(z)
D, D_logits = discriminator(images)
samples = sampler(z)
D_, D_logits_ = discriminator(G, reuse = True) d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(D_logits, tf.ones_like(D)))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(D_logits_, tf.zeros_like(D_)))
d_loss = d_loss_real + d_loss_fake
g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(D_logits_, tf.ones_like(D_))) z_sum = tf.histogram_summary('z', z)
d_sum = tf.histogram_summary('d', D)
d__sum = tf.histogram_summary('d_', D_)
G_sum = tf.image_summary('G', G) d_loss_real_sum = tf.scalar_summary('d_loss_real', d_loss_real)
d_loss_fake_sum = tf.scalar_summary('d_loss_fake', d_loss_fake)
d_loss_sum = tf.scalar_summary('d_loss', d_loss)
g_loss_sum = tf.scalar_summary('g_loss', g_loss) g_sum = tf.merge_summary([z_sum, d__sum, G_sum, d_loss_fake_sum, g_loss_sum])
d_sum = tf.merge_summary([z_sum, d_sum, d_loss_real_sum, d_loss_sum]) t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'd_' in var.name]
g_vars = [var for var in t_vars if 'g_' in var.name] saver = tf.train.Saver() d_optim = tf.train.AdamOptimizer(LR, beta1 = 0.5) \
.minimize(d_loss, var_list = d_vars, global_step = global_step)
g_optim = tf.train.AdamOptimizer(LR, beta1 = 0.5) \
.minimize(g_loss, var_list = g_vars, global_step = global_step) os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess = tf.InteractiveSession(config=config) writer = tf.train.SummaryWriter(train_dir, sess.graph) sample_z = np.random.uniform(-1, 1, size = (BATCH_SIZE, Z_DIM)) coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess = sess, coord = coord)
init = tf.initialize_all_variables()
sess.run(init) start = 0
if LOAD_MODEL:
print(" [*] Reading checkpoints...")
ckpt = tf.train.get_checkpoint_state(train_dir) if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
saver.restore(sess, os.path.join(train_dir, ckpt_name))
global_step = ckpt.model_checkpoint_path.split('/')[-1]\
.split('-')[-1]
print('Loading success, global_step is %s' % global_step) start = int(global_step) for epoch in range(EPOCH): batch_idxs = 3072 if epoch:
start = 0 for idx in range(start, batch_idxs): batch_z = np.random.uniform(-1, 1, size = (BATCH_SIZE, Z_DIM)) _, summary_str = sess.run([d_optim, d_sum], feed_dict = {z: batch_z})
writer.add_summary(summary_str, idx+1) # Update G network
_, summary_str = sess.run([g_optim, g_sum], feed_dict = {z: batch_z})
writer.add_summary(summary_str, idx+1) # Run g_optim twice to make sure that d_loss does not go to zero
_, summary_str = sess.run([g_optim, g_sum], feed_dict = {z: batch_z})
writer.add_summary(summary_str, idx+1) errD_fake = d_loss_fake.eval({z: batch_z})
errD_real = d_loss_real.eval()
errG = g_loss.eval({z: batch_z})
if idx % 20 == 0:
print("[%4d/%4d] d_loss: %.8f, g_loss: %.8f" \
% (idx, batch_idxs, errD_fake+errD_real, errG)) if idx % 100 == 0:
sample = sess.run(samples, feed_dict = {z: sample_z})
samples_path = CURRENT_DIR + '/samples_without_condition/'
save_images(sample, [8, 8],
samples_path + \
'sample_%d_epoch_%d.png' % (epoch, idx)) print '\n'*2
print('=========== %d_epoch_%d.png save down ==========='
%(epoch, idx))
print '\n'*2 if (idx % 512 == 0) or (idx + 1 == batch_idxs):
checkpoint_path = os.path.join(train_dir,
'my_dcgan_tfrecords.ckpt')
saver.save(sess, checkpoint_path, global_step = idx+1)
print '********* model saved *********' print '******* start with %d *******' % start coord.request_stop()
coord.join(threads)
sess.close() def evaluate():
eval_dir = CURRENT_DIR + '/eval/' checkpoint_dir = CURRENT_DIR + '/logs_without_condition/' z = tf.placeholder(tf.float32, [None, Z_DIM], name='z') G = generator(z, is_train = False) sample_z1 = np.random.uniform(-1, 1, size=(BATCH_SIZE, Z_DIM))
sample_z2 = np.random.uniform(-1, 1, size=(BATCH_SIZE, Z_DIM))
sample_z3 = (sample_z1 + sample_z2) / 2
sample_z4 = (sample_z1 + sample_z3) / 2
sample_z5 = (sample_z2 + sample_z3) / 2 print("Reading checkpoints...")
ckpt = tf.train.get_checkpoint_state(checkpoint_dir) saver = tf.train.Saver(tf.all_variables()) os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess = tf.InteractiveSession(config=config) if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name))
print('Loading success, global_step is %s' % global_step) eval_sess1 = sess.run(G, feed_dict = {z: sample_z1})
eval_sess2 = sess.run(G, feed_dict = {z: sample_z4})
eval_sess3 = sess.run(G, feed_dict = {z: sample_z3})
eval_sess4 = sess.run(G, feed_dict = {z: sample_z5})
eval_sess5 = sess.run(G, feed_dict = {z: sample_z2}) print(eval_sess3.shape) save_images(eval_sess1, [8, 8], eval_dir + 'eval_%d.png' % 1)
save_images(eval_sess2, [8, 8], eval_dir + 'eval_%d.png' % 2)
save_images(eval_sess3, [8, 8], eval_dir + 'eval_%d.png' % 3)
save_images(eval_sess4, [8, 8], eval_dir + 'eval_%d.png' % 4)
save_images(eval_sess5, [8, 8], eval_dir + 'eval_%d.png' % 5) sess.close() if __name__ == '__main__': if TRAIN:
train()
else:
evaluate()

完成后,运行代码,网络开始训练,大致需要 1~2 个小时,训练就可以完成,在训练的过程中,可以看出 sampler 采样的生成结果越来越好,最后得到了一个如下图所示的结果,由于人脸的数据分布比手写数据分布复杂多样,所以生成器不能完全抓住人脸的特征,下图所示的第 6 行第 7 列就是一个很糟糕的生成图像。

训练完成后,我们用 tensorboard 打开网络的 graph,看看经过我们的精心设计,网络结构变成了什么样子:

可以看出来,这次的结构图,比之前的顺眼多了,简直是处女座的福音啊有木有。

至此,我们完成了 DCGAN 的代码,下一篇文章,我们来说说 Caffe 那点事。

参考文献:

1. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/how_tos/reading_data/convert_to_records.py

2. https://github.com/carpedm20/DCGAN-tensorflow

不要怂,就是GAN (生成式对抗网络) (五):无约束条件的 GAN 代码与网络的 Graph的更多相关文章

  1. GAN生成式对抗网络(四)——SRGAN超高分辨率图片重构

    论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈 ...

  2. GAN生成式对抗网络(三)——mnist数据生成

    通过GAN生成式对抗网络,产生mnist数据 引入包,数据约定等 import numpy as np import matplotlib.pyplot as plt import input_dat ...

  3. GAN生成式对抗网络(一)——原理

    生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型 GAN包括两个核心模块. 1.生成器模块 --generator 2.判别器模块--de ...

  4. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  5. 不要怂,就是GAN (生成式对抗网络) (一): GAN 简介

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  6. 不要怂,就是GAN (生成式对抗网络) (二)

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  7. 不要怂,就是GAN (生成式对抗网络) (二):数据读取和操作

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  8. GAN生成式对抗网络(二)——tensorflow代码示例

    代码实现 当初学习时,主要学习的这个博客 https://xyang35.github.io/2017/08/22/GAN-1/ ,写的挺好的. 本文目的,用GAN实现最简单的例子,帮助认识GAN算法 ...

  9. 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN

    在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...

随机推荐

  1. 《DSP using MATLAB》Problem 2.2

    1.代码: %% ------------------------------------------------------------------------ %% Output Info abo ...

  2. Linux function: unshare

    When a new process is created with the clone() system call, a set of flags is provided which tells t ...

  3. 使用dev_add_pack注冊新的以太网类型

    接着上一篇文件:使用PF_PACKET和SOCK_RAW发送自己定义type以太网数据包 上一篇文章我们使用wireshare抓包.尽管在Linux下也能够使用抓包工具,可是我打算自己动手,在内核添加 ...

  4. JSP--JDBC技术

    JDBC技术1.JDBC简介 大型网站是离不开数据库的,使用JDBC技术链接数据库 JDBC:java Data Base Connectivity,使用JDBC连接数据库后数据库的增/删/改/查及批 ...

  5. TASKER 定制你的手机让它在办公室时屏幕 30 分钟才灭

    TASKER 定制你的手机让它在办公室时屏幕 30 分钟才灭 因为到的办公室,手机一直是充电的,不想屏幕太快关关掉,所以使用 TASKER 做了一个条件. 当 WIFI 连接到公司 WIFI 且充电中 ...

  6. java并发之原子性、可见性、有序性

    链接:https://blog.csdn.net/gongpulin/article/details/51211616

  7. 【linux】U盘安装启动出现press the enter key to begin the installation process 就不动弹了

    今天在物理机上安装centOS6.5  64bit 系统的时候,出现了U盘安装启动出现press the enter key to begin the installation process 就不动 ...

  8. python 书籍推荐 一

    最近"瑞丽模特学Python"的热点牵动了大江南北程序员的心,有人说这是炒作,也有人说这是推广Python的爆点...我嘿嘿一笑,美女就是美女,眼光那是杠杠的,不仅人美,学的语言也 ...

  9. erlang和ruby互相调用

    erlang调用ruby https://github.com/mojombo/erlectricity ruby调用erlang https://github.com/davebryson/rint ...

  10. week1-绪论

    一 .作业题目 仿照三元组或复数的抽象数据类型写出有理数抽象数据类型的描述 (有理数是其分子.分母均为整数且分母不为零的分数). 有理数基本运算: 构造有理数T,元素e1,e2分别被赋以分子.分母值 ...