[抄题]:

给出 n 个节点,标号分别从 0 到 n - 1 并且给出一个 无向边的列表 (给出每条边的两个顶点), 写一个函数去判断这张`无向`图是否是一棵树。

给出n = 5 并且 edges = [[0, 1], [0, 2], [0, 3], [1, 4]], 返回 true.

给出n = 5 并且 edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], 返回 false.

[暴力解法]:

时间分析:

空间分析:

[思维问题]:

[一句话思路]:

树中不能有环,两点+老大哥三角成环。遍历所有边并且缩点,一旦出现公共祖先就退出。

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. 树的基本性质是: 边= 点数 - 1,若不符合则退出

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

树中不能有环。

[复杂度]:Time complexity: O(n) Space complexity: O(n)

[英文数据结构或算法,为什么不用别的数据结构或算法]:

两点+老大哥三角成环,union find可以找老大哥。

[关键模板化代码]:

class UnionFind {
HashMap<Integer, Integer> father = new HashMap<>(); UnionFind(int n) {
for (int i = 0; i < n; i++) {
father.put(i,i);
}
} int compressed_find(int x) {
//find ultimate parent
int parent = x;
while (parent != father.get(parent)) {
parent = father.get(parent);
}
//change 2 ultimate parent
int temp = -1;
int fa = x;
while (fa != father.get(fa)) {
temp = father.get(fa);
father.put(fa,parent);
fa = temp;
}
return parent;
} void union (int x, int y) {
int fa_x = compressed_find(x);
int fa_y = compressed_find(y);
if (fa_x != fa_y) {
father.put(fa_x,fa_y);
}
}
}

并查集class

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

public class Solution {
/*
* @param n: An integer
* @param edges: a list of undirected edges
* @return: true if it's a valid tree, or false
*/
//class
class UnionFind {
HashMap<Integer, Integer> father = new HashMap<>(); UnionFind(int n) {
for (int i = 0; i < n; i++) {
father.put(i,i);
}
} int compressed_find(int x) {
//find ultimate parent
int parent = x;
while (parent != father.get(parent)) {
parent = father.get(parent);
}
//change 2 ultimate parent
int temp = -1;
int fa = x;
while (fa != father.get(fa)) {
temp = father.get(fa);
father.put(fa,parent);
fa = temp;
}
return parent;
} void union (int x, int y) {
int fa_x = compressed_find(x);
int fa_y = compressed_find(y);
if (fa_x != fa_y) {
father.put(fa_x,fa_y);
}
}
} public boolean validTree(int n, int[][] edges) {
//corner case is special
if (edges.length != n - 1) {
return false;
}
UnionFind uf = new UnionFind(n);
for (int i = 0; i < edges.length; i++) {
if (uf.compressed_find(edges[i][0]) ==
uf.compressed_find(edges[i][1])) {
return false;
}
uf.union(edges[i][0], edges[i][1]);
}
return true;
}
}

解法2:

323进化而来

添加每一条边 root1 == root0代表有环,不行

count > 1代表分块,不行

class Solution {
public boolean validTree(int n, int[][] edges) {
//use union find
//ini
int count = n;
int[] roots = new int[n]; //cc
if (n == 0 || edges == null) return true; //initialization the roots as themselves
for (int i = 0; i < n; i++)
roots[i] = i; //add every edge
for (int[] edge : edges) {
int root0 = find(edge[0], roots);
int root1 = find(edge[1], roots); if (root0 == root1) return false; //connect but is not merge
roots[root0] = root1;
count--;
} //return
return count == 1;
} public int find(int id, int[] roots) {
while (id != roots[id])
id = roots[roots[id]];
return id;
}
}

图是否是树 · Graph Valid Tree的更多相关文章

  1. [Swift]LeetCode261.图验证树 $ Graph Valid Tree

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  2. [Locked] Graph Valid Tree

    Graph Valid Tree Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is ...

  3. [LeetCode] Graph Valid Tree 图验证树

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. [LeetCode] 261. Graph Valid Tree 图是否是树

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  5. Leetcode: Graph Valid Tree && Summary: Detect cycle in undirected graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  6. 261. Graph Valid Tree

    题目: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nod ...

  7. [LeetCode#261] Graph Valid Tree

    Problem: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair o ...

  8. Graph Valid Tree -- LeetCode

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  9. Graph Valid Tree

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. promise的基础知识

    promise 相当于异步操作结果的占位符 它不会去订阅一个事件,也不会传递一个回调函数给目标函数,而是让函数返回一个promise,例如: let promise = readFile('a.txt ...

  2. c++ 读取所有图片

    copyright by Jun Yang, SUN YAT-SEN UNIVERSITY //FileList.h ///////////////////////////////////////// ...

  3. 华为荣耀7i手动更改DNS,提高网页加载速度

    为什么在同样的Wi-Fi网络下,别人的手机可以秒开网页,但自己的手机却总会慢个半拍或是经常打不开,简直龟速.有时还会加载网页失败.我想大部分人都遇到过吧. 今天本人给大家介绍一种方法,可以加快打开网页 ...

  4. hibernate映射xml文件配置之一对多,多对多

    一对多配置 [1]班级和学生模型 --->班级可容纳多个学生 --->学生只能属于一个班级 [2]一对多配置中的关系维护(inverse) --->一端放弃关系的维护 ---> ...

  5. NOIP模拟赛(洛谷11月月赛)

    T1  终于结束的起点 题解:枚举啊... 斐波那契数 第46个爆int,第92个爆long long.... 发现结果一般是m的几倍左右....不用担心T. #include<iostream ...

  6. 两个不错点电影ED2000资源

    http://simplecd.me/ http://www.ed2000.com/ http://www.2tu.cc/ http://www.mp4ba.com/ http://www.ddyy. ...

  7. LCD RGB 控制技术 时钟篇(下)

    我们先回顾一下之前的典型时序图 在这个典型的时序图里面,除了上篇博文讲述的HSYNC VSYNC VDEN VCLK这几信号外,我们还能看见诸如HSPW. VSPW,HBPD. HFPD,VBPD. ...

  8. ubuntu安装了mysql 但是编译报错 mysql.h: No such file or directory

    在Ubuntu体系中,已经安装了mysql,即应用sudo apt-get install mysql-server mysql-client 但是用C编译mysql数据库时,报错fatal erro ...

  9. HDU 4497 GCD and LCM(数论+容斥原理)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  10. HDU 3179 二叉搜索树(树的建立)

    二叉搜索树 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...