[抄题]:

给出 n 个节点,标号分别从 0 到 n - 1 并且给出一个 无向边的列表 (给出每条边的两个顶点), 写一个函数去判断这张`无向`图是否是一棵树。

给出n = 5 并且 edges = [[0, 1], [0, 2], [0, 3], [1, 4]], 返回 true.

给出n = 5 并且 edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], 返回 false.

[暴力解法]:

时间分析:

空间分析:

[思维问题]:

[一句话思路]:

树中不能有环,两点+老大哥三角成环。遍历所有边并且缩点,一旦出现公共祖先就退出。

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. 树的基本性质是: 边= 点数 - 1,若不符合则退出

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

树中不能有环。

[复杂度]:Time complexity: O(n) Space complexity: O(n)

[英文数据结构或算法,为什么不用别的数据结构或算法]:

两点+老大哥三角成环,union find可以找老大哥。

[关键模板化代码]:

class UnionFind {
HashMap<Integer, Integer> father = new HashMap<>(); UnionFind(int n) {
for (int i = 0; i < n; i++) {
father.put(i,i);
}
} int compressed_find(int x) {
//find ultimate parent
int parent = x;
while (parent != father.get(parent)) {
parent = father.get(parent);
}
//change 2 ultimate parent
int temp = -1;
int fa = x;
while (fa != father.get(fa)) {
temp = father.get(fa);
father.put(fa,parent);
fa = temp;
}
return parent;
} void union (int x, int y) {
int fa_x = compressed_find(x);
int fa_y = compressed_find(y);
if (fa_x != fa_y) {
father.put(fa_x,fa_y);
}
}
}

并查集class

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

public class Solution {
/*
* @param n: An integer
* @param edges: a list of undirected edges
* @return: true if it's a valid tree, or false
*/
//class
class UnionFind {
HashMap<Integer, Integer> father = new HashMap<>(); UnionFind(int n) {
for (int i = 0; i < n; i++) {
father.put(i,i);
}
} int compressed_find(int x) {
//find ultimate parent
int parent = x;
while (parent != father.get(parent)) {
parent = father.get(parent);
}
//change 2 ultimate parent
int temp = -1;
int fa = x;
while (fa != father.get(fa)) {
temp = father.get(fa);
father.put(fa,parent);
fa = temp;
}
return parent;
} void union (int x, int y) {
int fa_x = compressed_find(x);
int fa_y = compressed_find(y);
if (fa_x != fa_y) {
father.put(fa_x,fa_y);
}
}
} public boolean validTree(int n, int[][] edges) {
//corner case is special
if (edges.length != n - 1) {
return false;
}
UnionFind uf = new UnionFind(n);
for (int i = 0; i < edges.length; i++) {
if (uf.compressed_find(edges[i][0]) ==
uf.compressed_find(edges[i][1])) {
return false;
}
uf.union(edges[i][0], edges[i][1]);
}
return true;
}
}

解法2:

323进化而来

添加每一条边 root1 == root0代表有环,不行

count > 1代表分块,不行

class Solution {
public boolean validTree(int n, int[][] edges) {
//use union find
//ini
int count = n;
int[] roots = new int[n]; //cc
if (n == 0 || edges == null) return true; //initialization the roots as themselves
for (int i = 0; i < n; i++)
roots[i] = i; //add every edge
for (int[] edge : edges) {
int root0 = find(edge[0], roots);
int root1 = find(edge[1], roots); if (root0 == root1) return false; //connect but is not merge
roots[root0] = root1;
count--;
} //return
return count == 1;
} public int find(int id, int[] roots) {
while (id != roots[id])
id = roots[roots[id]];
return id;
}
}

图是否是树 · Graph Valid Tree的更多相关文章

  1. [Swift]LeetCode261.图验证树 $ Graph Valid Tree

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  2. [Locked] Graph Valid Tree

    Graph Valid Tree Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is ...

  3. [LeetCode] Graph Valid Tree 图验证树

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. [LeetCode] 261. Graph Valid Tree 图是否是树

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  5. Leetcode: Graph Valid Tree && Summary: Detect cycle in undirected graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  6. 261. Graph Valid Tree

    题目: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nod ...

  7. [LeetCode#261] Graph Valid Tree

    Problem: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair o ...

  8. Graph Valid Tree -- LeetCode

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  9. Graph Valid Tree

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. grub2 详解

    grub2详解(翻译和整理官方手册)   分类: Linux 基础篇,Linux 杂项   本文原创地址在博客园:https://www.cnblogs.com/f-ck-need-u/archive ...

  2. Cobbler自动化安装部署系统

    自动化安装部署 https://www.cnblogs.com/nulige/p/6796593.html PXE+Kickstart工作原理 pxe+kickstart工作流程 网卡上的pxe芯片有 ...

  3. Jmeter-Interleave Controller(交替控制器)

    名称: 注释: ignore sub-controller blocks: If checked, the interleave controller will treat sub-controlle ...

  4. 《DSP using MATLAB》示例 Example 9.8

    代码: %% ------------------------------------------------------------------------ %% Output Info about ...

  5. Array.new(5, [1, 2, 3]) or Array.new(5) { [1, 2, 3] }的差别

    Array.new(5, [1, 2, 3]) or Array.new(5) { [1, 2, 3] } Array.new(size, default_object) creates an arr ...

  6. Oracle按时间段分组统计

    想要按时间段分组查询,首先要了解level,connect by,oracle时间的加减. 关于level这里不多说,我只写出一个查询语句: ----level 是一个伪例 ---结果: 关于conn ...

  7. 纯php实现中秋博饼游戏(1):绘制骰子图案

    最近公司中秋博饼(在厦门),自己没事也想玩玩,所以就想动手写了一个纯php实现的中秋博饼游戏,既然要纯php实现,就要用php来生成图案,所以第一步就先绘制骰子图案. 平时很少使用php绘图,不过查查 ...

  8. [您有新的未分配科技点]可,可,可持久化!?------0-1Trie和可持久化Trie普及版讲解

    这一次,我们来了解普通Trie树的变种:0-1Trie以及在其基础上产生的可持久化Trie(其实,普通的Trie也可以可持久化,只是不太常见) 先简单介绍一下0-1Trie:一个0-1Trie节点只有 ...

  9. linux 使用中括号进行条件判断

       格式 “#”代表空格,不可缺少 [# param1#op# param2 #] 这种带比较操作符的形式,op左右必须使用空格隔开. 如 [# “3”==”2” #]  这种缺少空格的写法会得到结 ...

  10. LCD RGB 控制技术 时钟篇(下)

    我们先回顾一下之前的典型时序图 在这个典型的时序图里面,除了上篇博文讲述的HSYNC VSYNC VDEN VCLK这几信号外,我们还能看见诸如HSPW. VSPW,HBPD. HFPD,VBPD. ...