Coding Contest

http://acm.hdu.edu.cn/showproblem.php?pid=5988

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 5337    Accepted Submission(s): 1256

Problem Description
A coding contest will be held in this university, in a huge playground. The whole playground would be divided into N blocks, and there would be M directed paths linking these blocks. The i-th path goes from the ui-th block to the vi-th block. Your task is to solve the lunch issue. According to the arrangement, there are sicompetitors in the i-th block. Limited to the size of table, bi bags of lunch including breads, sausages and milk would be put in the i-th block. As a result, some competitors need to move to another block to access lunch. However, the playground is temporary, as a result there would be so many wires on the path.
For the i-th path, the wires have been stabilized at first and the first competitor who walker through it would not break the wires. Since then, however, when a person go through the i - th path, there is a chance of pi to touch
the wires and affect the whole networks. Moreover, to protect these wires, no more than ci competitors are allowed to walk through the i-th path.
Now you need to find a way for all competitors to get their lunch, and minimize the possibility of network crashing.
 
Input
The first line of input contains an integer t which is the number of test cases. Then t test cases follow.
For each test case, the first line consists of two integers N (N ≤ 100) and M (M ≤ 5000). Each of the next N lines contains two integers si and bi (si , bi ≤ 200).
Each of the next M lines contains three integers ui , vi and ci(ci ≤ 100) and a float-point number pi(0 < pi < 1).
It is guaranteed that there is at least one way to let every competitor has lunch.
 
Output
For each turn of each case, output the minimum possibility that the networks would break down. Round it to 2 digits.
 
Sample Input
1
4 4
2 0
0 3
3 0
0 3
1 2 5 0.5
3 2 5 0.5
1 4 5 0.5
3 4 5 0.5
 
Sample Output
0.50
 
Source
 
求网络被破坏的最小可能性,因为是乘法,所以要用取对数的方法把它改成加法。
因为概率是小于1的,所以取对数完是负数,需要用 - 把它转为正数。
但是转为正数后,原来的最小值就会变为最大值,所以用p=-log2(1-p),转为求不被破坏的最大可能行,跑费用流
因为是浮点型,所以在松弛的时候要加上eps。
最后,要用for去代替memset,不然可能会t...
 
 #include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cmath>
#include<cstdio>
using namespace std; const double eps=1e-;
const int INF=0x3f3f3f3f;
const int N=;
const int M=;
int top;
double dist[N];
int pre[N];
bool vis[N];
int c[N];
int maxflow; struct Vertex{
int first;
}V[N];
struct Edge{
int v,next;
int cap,flow;
double cost;
}E[M]; void init(int num){
// memset(V,-1,sizeof(V));
for(int i=;i<num;i++){
V[i].first=-;
}
top=;
maxflow=;
} void add_edge(int u,int v,int c,double cost){
E[top].v=v;
E[top].cap=c;
E[top].flow=;
E[top].cost=cost;
E[top].next=V[u].first;
V[u].first=top++;
} void add(int u,int v,int c,double cost){
add_edge(u,v,c,cost);
add_edge(v,u,,-cost);
} bool SPFA(int s,int t,int n){
int i,u,v;
queue<int>qu;
// memset(vis,false,sizeof(vis));
// memset(c,0,sizeof(c));
// memset(pre,-1,sizeof(pre));
for(i=;i<=n+;i++){
dist[i]=INF;
vis[i]=false;
c[i]=;
pre[i]=-;
}
// memset(dist,INF,sizeof(dist));
vis[s]=true;
c[s]++;
dist[s]=;
qu.push(s);
while(!qu.empty()){
u=qu.front();
qu.pop();
vis[u]=false;
for(i=V[u].first;~i;i=E[i].next){
v=E[i].v;
if(E[i].cap>E[i].flow&&dist[v]>dist[u]+E[i].cost+eps){
dist[v]=dist[u]+E[i].cost;
pre[v]=i;
if(!vis[v]){
c[v]++;
qu.push(v);
vis[v]=true;
if(c[v]>n){
return false;
}
}
}
}
}
if(dist[t]==INF){
return false;
}
return true;
} double MCMF(int s,int t,int n){
int d,i;
double mincost=;
while(SPFA(s,t,n)){
d=INF;
for(i=pre[t];~i;i=pre[E[i^].v]){
d=min(d,E[i].cap-E[i].flow);
}
maxflow+=d;
for(i=pre[t];~i;i=pre[E[i^].v]){
E[i].flow+=d;
E[i^].flow-=d;
}
mincost+=dist[t]*d;
}
return mincost;
} int main(){
int n,m;
int T;
scanf("%d",&T);
while(T--){
scanf("%d %d",&n,&m);
init(n+);
int a,b,c;
double p;
int s=,t=n+;
for(int i=;i<=n;i++){
scanf("%d %d",&a,&b);
if(a>b){
add(s,i,a-b,);
}
else if(a<b){
add(i,t,b-a,);
}
}
for(int i=;i<=m;i++){
scanf("%d %d %d %lf",&a,&b,&c,&p);
if(c>) add(a,b,,);
if(c>) add(a,b,c-,-log2(-p));
}
double ans=MCMF(s,t,n+);
printf("%.2f\n",1.0-pow(,-ans));
}
}

Coding Contest(费用流变形题,double)的更多相关文章

  1. hdu-5988 Coding Contest(费用流)

    题目链接: Coding Contest Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Ot ...

  2. 2016青岛区域赛.Coding Contest(费用流 + 概率计算转换为加法计算)

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  3. HDU 5988 Coding Contest(费用流+浮点数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5988 题目大意: 给定n个点,m条有向边,每个点是一个吃饭的地方,每个人一盒饭.每个点有S个人,有B盒 ...

  4. HDU5988 - 2016icpc青岛 - G - Coding Contest 费用流(利用对数化乘为加

    HDU5988 题意: 有n个区域,每个区域有s个人,b份饭.现在告诉你每个区域间的有向路径,每条路有容量和损坏路径的概率.问如何走可以使得路径不被破坏的概率最小.第一个人走某条道路是百分百不会损坏道 ...

  5. HDU5988 Coding Contest(费用流)

    2016青岛现场赛的一题,由于第一次走过不会产生影响,需要拆点,不过比赛时没想到,此外还有许多细节要注意,如要加eps,时间卡得较紧要注意细节优化等 #include <iostream> ...

  6. Lunch Time(费用流变型题,以时间为费用)

    Lunch Time http://acm.hdu.edu.cn/showproblem.php?pid=4807 Time Limit: 4000/2000 MS (Java/Others)     ...

  7. HDU 3376 &amp;&amp; 2686 方格取数 最大和 费用流裸题

    题意: 1.一个人从[1,1] ->[n,n] ->[1,1] 2.仅仅能走最短路 3.走过的点不能再走 问最大和. 对每一个点拆点限流为1就可以满足3. 费用流流量为2满足1 最大费用流 ...

  8. POJ 3686 The Windy's(思维+费用流好题)

    The Windy's Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5362   Accepted: 2249 Descr ...

  9. Going Home POJ - 2195 费用流板子题

    On a grid map there are n little men and n houses. In each unit time, every little man can move one ...

随机推荐

  1. ue4 多相机分屏与小地图效果实现教程

    转自:http://blog.csdn.net/shenmifangke/article/details/51940007  通过使用ue4的UI和rendertarget来实现 优点就是可以随意设置 ...

  2. onmouseenter和onmouseleave的兼容性问题

    <div onmouseenter="displayMyCon($(this))" onmouseleave="hideMyCon(event,$(this))&q ...

  3. 运行inetmgr提示“找不到文件”无法打开IIS管理器的解决办法

    运行inetmgr提示“找不到文件”无法打开IIS管理器的解决办法 不知道什么时候开始运行inetmgr就提示找不到文件了,本以为是IIS坏了,这两天发现IIS服务还是可以运行的,只是运行inetmg ...

  4. SQL SERVER回滚恢复误操作的数据

    在生产数据库做CURD操作时,可能会有执行某条语句误操作的情况发生,针对这个种情况有两点建议: 1. 在SQL SERVER上开启事务确认功能,当执行完语句后确认无误,再提交事务.(开启方法见附件图片 ...

  5. 53. sql2005“备份集中的数据库备份与现有的xx数据库不同”解决方法

    RESTORE DATABASE LiveBOS_KeJiFROM DISK = 'D:\LiveBOS_KeJi_backup_201503090000.bak' --bak文件路径with rep ...

  6. YII assets使用

    为什么用YII assets 1.assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件 ,但是我们又希望将module单独出来,所以需要使用发 ...

  7. as3 文档类引用

    /**文档类引用**/ public static var main:CoverMain; public function CoverMain() { main=this; }

  8. jdk免安装对应配置

    通常我们不用配置jdk,tomcat和eclipse会选取系统的环境变量获取jdk,但有时一个系统中部署不同的项目,各版本又不一样,不能完全兼容. 因此就需要采用自己的jdk.将jdk安装后,将安装后 ...

  9. 基于OpenGL编写一个简易的2D渲染框架-01 创建窗口

    最近正在学习OpenGL,我认为学习的最快方法就是做一个小项目了. 如果对OpenGL感兴趣的话,这里推荐一个很好的学习网站 https://learnopengl-cn.github.io/ 我用的 ...

  10. 脚本中 %~dp0

    cmd窗口中 for /? 查询参数含义 %~dp0, 将参数转换为磁盘路径+名字 例: 脚本中一行 %~dp0abc.exe (abc.exe位置c:\test\abc.exe) 展开后则为 c:\ ...