Beijing Guards

Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City Wall, the Inner City Wall, and finally the Outer City Wall. Most of these walls were demolished in the 50s and 60s to make way for roads. The walls were protected by guard towers, and there was a guard living in each tower. The wall can be considered to be a large ring, where every guard tower has exaetly two neighbors.

The guard had to keep an eye on his section of the wall all day, so he had to stay in the tower. This is a very boring job, thus it is important to keep the guards motivated. The best way to motivate a guard is to give him lots of awards. There are several different types of awards that can be given: the Distinguished Service Award, the Nicest Uniform Award, the Master Guard Award, the Superior Eyesight Award, etc. The Central Department of City Guards determined how many awards have to be given to each of the guards. An award can be given to more than one guard. However, you have to pay attention to one thing: you should not give the same award to two neighbors, since a guard cannot be proud of his award if his neighbor already has this award. The task is to write a program that determines how many different types of awards are required to keep all the guards motivated.

Input

The input contains several blocks of test eases. Each case begins with a line containing a single integer ln100000, the number of guard towers. The next n lines correspond to the n guards: each line contains an integer, the number of awards the guard requires. Each guard requires at least 1, and at most l00000 awards. Guard iand i + 1 are neighbors, they cannot receive the same award. The first guard and the last guard are also neighbors.

The input is terminated by a block with n = 0.

Output

For each test case, you have to output a line containing a single integer, the minimum number x of award types that allows us to motivate the guards. That is, if we have x types of awards, then we can give as many awards to each guard as he requires, and we can do it in such a way that the same type of award is not given to neighboring guards. A guard can receive only one award from each type.

Sample Input

3
4
2
2
5
2
2
2
2
2
5
1
1
1
1
1
0

Sample Output

8
5
3 题目大意:有n个人围成一个圈,其中第i个人想要ri 个不同的礼物。相邻的两个人可以聊天,炫耀自己的礼物。如果两个相邻的人拥有同一种礼物,则双方都会很不高兴。问:一共需要多少种礼物才能满足所有人的需要?假设每种礼物有无穷多个,不相邻的两个人不会聊天,所以即使拿到相同的礼物也没关系。
  比如,一共有5个人,每个人都要一个礼物,则至少需要3种礼物。如果把这3中礼物编号为1,2,3,则5个人拿到的礼物应分别是:1,2,1,2,3.如果每个人要两个礼物,则至少要5种礼物,且5个人拿到的礼物集合应该是:{1,2},{3,4},{1,5},{2,3},{4,5}。 分析:如果n为偶数,那么答案为相邻的两个人的r值之和的最大值,即p=max{ri+ri+1}(i=1,2,...,n),规定rn+1 = r1 。不难看出,这个数值是答案的下限,而且还可以构造出只用p种礼物的方案:对于编号为i的人,如果i是奇数,从前边开始取;如果i是偶数,从后边开始取。
  n为奇数的情况,需要二分答案,假设已知共有p种礼物,设第1个人的礼物是1~r1,不难发现最优的分配策略一定是这样的:编号为偶数的人尽量往前取,编号为奇数的人尽量往后取。这样编号为n的人在不冲突的前提下,尽可能的往后取了rn样东西,最后判定编号为1的人和编号为n的人是否冲突即可。比如,n=5,A={2,2,5,2,5},p=8时,则第1个人取{1,2},第2个人取{3,4},第3个人取{8,7,6,5,2},第4个人取{1,3},第5个人取{8,7,6,5,4},由于第1个人与第5个人不冲突,所以p=8是可行的。 代码如下:
 #include<cstdio>
#include<algorithm>
using namespace std; const int maxn = + ;
int n, r[maxn], left[maxn], right[maxn]; // 测试p个礼物是否足够。
// left[i]是第i个人拿到的“左边的礼物”总数,right类似
bool test(int p) {
int x = r[], y = p - r[];
left[] = x; right[] = ;
for(int i = ; i <= n; i++) {
if(i % == ) {
right[i] = min(y - right[i-], r[i]); // 尽量拿右边的礼物
left[i] = r[i] - right[i];
}
else {
left[i] = min(x - left[i-], r[i]); // 尽量拿左边的礼物
right[i] = r[i] - left[i];
}
}
return left[n] == ;
} int main() {
int n;
while(scanf("%d", &n) == && n) {
for(int i = ; i <= n; i++) scanf("%d", &r[i]);
r[n+] = r[]; int L = , R = ;
for(int i = ; i <= n; i++) L = max(L, r[i] + r[i+]);
if(n % == ) {
for(int i = ; i <= n; i++) R = max(R, r[i]*);
while(L < R) {
int M = L + (R-L)/;
if(test(M)) R = M; else L = M+;
}
}
printf("%d\n", L);
}
return ;
}

 

LA 3177 Beijing Guards(二分法 贪心)的更多相关文章

  1. Uva LA 3177 - Beijing Guards 贪心,特例分析,判断器+二分,记录区间内状态数目来染色 难度: 3

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  2. UVALive 3177 Beijing Guards

    题目大意:给定一个环,每个人要得到Needi种物品,相邻的人之间不能得到相同的,问至少需要几种. 首先把n=1特判掉. 然后在n为偶数的时候,答案就是max(Needi+Needi+1)(包括(1,n ...

  3. UVa 1335 Beijing Guards (二分+贪心)

    题意:n 个人成一个圈,每个人想要 ri 种不同的礼物,要求相邻两个人没有相同的,求最少需要多少礼物. 析:如果 n 是偶数,那么答案一定是相邻两个人的礼物总种数之和的最大值,那么如果是奇数,就没那么 ...

  4. LA3177 Beijing Guards

    Beijing Guards Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the ...

  5. 题解 UVA1335 【Beijing Guards】

    UVA1335 Beijing Guards 双倍经验:P4409 [ZJOI2006]皇帝的烦恼 如果只是一条链,第一个护卫不与最后一个护卫相邻,那么直接贪心,找出最大的相邻数的和. 当变成环,贪心 ...

  6. uva 1335 - Beijing Guards(二分)

    题目链接:uva 1335 - Beijing Guards 题目大意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物, ...

  7. 【二分答案+贪心】UVa 1335 - Beijing Guards

    Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City ...

  8. UVA-1335(UVALive-3177) Beijing Guards 贪心 二分

    题面 题意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物,则双方都会很不高兴,问最少需要多少种不同的礼物才能满足所有人 ...

  9. poj3122-Pie(二分法+贪心思想)

    一,题意: 有f+1个人(包括自己),n块披萨pie,给你每块pie的半径,要你公平的把尽可能多的pie分给每一个人 而且每个人得到的pie来自一个pie,不能拼凑,多余的边角丢掉.二,思路: 1,输 ...

随机推荐

  1. OpenSSH 高级运用两则

    00×0.相关介绍 OpenSSH(OpenBSD Secure Shell)使用 SSH 通过计算机网络加密通信的实现. 它是替换由 SSH Communications Security 所提供的 ...

  2. 引入less报错解决方法以及浏览器设计不同的地方

    XMLHttpRequest cannot load file:///C:/Users/PAXST/Desktop/805/first.less. Cross origin requests are ...

  3. C#- 压缩和解压缩的研究 .

    用了第二种方法,感觉很不错,其他都没用过了.摘录下来,做一个备忘. 最近在网上查了一下在.net中进行压缩和解压缩的方法,方法有很多,我找到了以下几种: 1.利用.net自带的压缩和解压缩方法GZip ...

  4. IOS开发UIImage中stretchableImageWithLeftCapWidth方法的解释

    - (UIImage *)stretchableImageWithLeftCapWidth:(NSInteger)leftCapWidth topCapHeight:(NSInteger)topCap ...

  5. mysql字符串分割函数(行转列)

    由于工作需要需要处理一些以逗号分隔的字符串,每次都要现做很是麻烦,网上找了很多都没有现成的,好吧,自己动手写一个好了 )) ) BEGIN /*函数功能: 把带逗号的字符串分割取出 参数: num 要 ...

  6. 在Java中如何用String类中的indexof方法得到一个词的出现频率

    public class Test{ public static void main(String[] args) { String s="hello jack hello look me ...

  7. 单位内部DNS架设及域名解析服务

    越来越多的企业将企业内部局域网通过光缆.交换机等高速互连设备连接起来,形成较大规模的中型网络,网络上的主机和用户也随之日渐增多.作为 Internet的缩影,企业内部网上的各类服务器(如WWW服务器. ...

  8. Splay Tree的删除操作

    Splay Tree的插入操作,搜索操作,和删除操作都实现了,那么就能够使用来解题了. 指针的删除操作的处理还是那么难的,非常多坎须要避开. 同一个坎还是坑了我好多次,就是指针传递的问题,什么时候须要 ...

  9. linux中shell变量$#,$@,$0,$1,$2的含义解释

    linux中shell变量$#,$@,$0,$1,$2的含义解释 linux中shell变量$#,$@,$0,$1,$2的含义解释:  变量说明:  $$  Shell本身的PID(ProcessID ...

  10. [Javascript] Get Started with LeafletJS Mapping

    Leaflet makes creating maps in the browser dead simple. With some HTML and 3 lines of JavaScript, we ...