题目

传送们

这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!

输入格式

一行包含两个整数N,M,之间由一个空格隔开。

输出格式

总共的方案数,由于该值可能很大,只需给出方案数模9999973的结果。

输入输出样例

样例输入

1 3

样例输出

7

思路

定义dp[i][j][k]数组代表第i行中,有j列有一个棋子,有k列有两个棋子,我们从当前状态递推下一状态,有6种情况

  1. 不放棋子,\(dp[i+1][j][k]=(dp[i+1][j][k]+dp[i][j][k])%mod\);
  2. 在没有棋子的一列中放一个棋子,\(dp[i+1][j+1][k]=(dp[i+1][j+1][k]+dp[i][j][k]*(m-j-k))%mod\);
  3. 在没有棋子的两列中放棋子,\(dp[i+1][j+2][k]=(dp[i+1][j+2][k]+dp[i][j][k]*c(m-j-k))%mod\);(c函数为求\(C^2_n\))
  4. 在有一个棋子的一列中放棋子,\(dp[i+1][j-1][k+1]=(dp[i+1][j-1][k+1]+dp[i][j][k]*j)%mod\);
  5. 在有一个棋子的两列放棋子,\(dp[i+1][j-2][k+2]=(dp[i+1][j-2][k+2]+dp[i][j][k]*c(j))%mod\);
  6. 在有一个棋子的一列和没有棋子的一列放棋子,\(dp[i+1][j][k+1]=(dp[i+1][j][k+1]+dp[i][j][k]*(m-j-k)*(j))%mod\);

    然后跑个二维求解即可

附上代码一份

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,m;
const int mod=9999973;
ll dp[110][110][110];
inline int c(int x){
return x*(x-1)/2;
}
int main(){
scanf("%d%d",&n,&m);
dp[0][0][0]=1;
for(int i=0;i<=n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k+j<=m;k++){
if(dp[i][j][k]){
dp[i+1][j][k]=(dp[i+1][j][k]+dp[i][j][k])%mod;
if(m-j-k>=1)dp[i+1][j+1][k]=(dp[i+1][j+1][k]+dp[i][j][k]*(m-j-k))%mod;
if(m-j-k>=2)dp[i+1][j+2][k]=(dp[i+1][j+2][k]+dp[i][j][k]*c(m-j-k))%mod;
if(j>=1)dp[i+1][j-1][k+1]=(dp[i+1][j-1][k+1]+dp[i][j][k]*j)%mod;
if(j>=2)dp[i+1][j-2][k+2]=(dp[i+1][j-2][k+2]+dp[i][j][k]*c(j))%mod;
if(m-j-k>=1 && j>=1)dp[i+1][j][k+1]=(dp[i+1][j][k+1]+dp[i][j][k]*(m-j-k)*(j))%mod;
}
}
}
}
long long ans=0;
for(int i=0;i<=m;i++){
for(int j=0;j+i<=m;j++){
ans=(ans+dp[n][i][j])%mod;
}
}
printf("%lld",ans); }

状压DP之中国象棋的更多相关文章

  1. 洛谷P2051 [AHOI2009] 中国象棋(状压dp)

    题目简介 n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100 题目分析 算法考虑 考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压D ...

  2. 状压dp(状态压缩&&dp结合)学习笔记(持续更新)

    嗯,作为一只蒟蒻,今天再次学习了状压dp(学习借鉴的博客) 但是,依旧懵逼·································· 这篇学习笔记是我个人对于状压dp的理解,如果有什么不对的 ...

  3. 状压DP入门详解+题目推荐

    在动态规划的题型中,一般叫什么DP就是怎么DP,状压DP也不例外 所谓状态压缩,一般是通过用01串表示状态,充分利用二进制数的特性,简化计算难度.举个例子,在棋盘上摆放棋子的题目中,我们可以用1表示当 ...

  4. 状压DP之LGTB 与序列

    题目 思路 这道题竟然是状压DP,本人以为是数论,看都没看就去打下一题的暴力了,哭 \(A_i\)<=30,所以我们只需要考虑1-58个数,再往后选的话还不如选1更优,注意,1是可以重复选取的, ...

  5. 状压dp大总结1 [洛谷]

    前言 状态压缩是一种\(dp\)里的暴力,但是非常优秀,状态的转移,方程的转移和定义都是状压\(dp\)的难点,本人在次总结状压dp的几个题型和例题,便于自己以后理解分析状态和定义方式 状态压缩动态规 ...

  6. BZOJ 2064: 分裂( 状压dp )

    n1+n2次一定可以满足..然后假如之前土地集合S1的子集subs1和之后土地集合S2的子集subs2相等的话...那么就少了2个+操作...所以最后答案就是n1+n2-少掉的最多操作数, 由状压dp ...

  7. 【BZOJ2064】分裂 状压DP

    [BZOJ2064]分裂 Description 背景:和久必分,分久必和...题目描述:中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力.同时经常搞OI的他把这个变成了一个 ...

  8. BZOJ_2064_分裂_状压DP

    BZOJ_2064_分裂_状压DP Description 背景: 和久必分,分久必和... 题目描述: 中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力. 同时经常搞OI的 ...

  9. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

随机推荐

  1. uniapp每隔几秒执行一下网络请求(h5端亲测可以,其他端未测试)

    methods: { //执行网络请求 run() { uni.request({ method: 'GET',//请求方式 url: ‘’//请求地址 }).then(res=>{ conso ...

  2. Nginx源码编译安装选项

    [Nginx源码编译过程] make是用来编译的,它从Makefile中读取指令,然后编译. make install是用来安装的,它也从Makefile中读取指令,安装到指定的位置. configu ...

  3. <WP8开发学习笔记>获取手机的常用型号(如Lumia920,而非RM-822)

    之前WP7时代可以用API获得WP手机的型号如lumia510,但是到了WP8后用APi只能获得硬件版本号了如RM-822,这种型号可以让我们更详细的了解具体的硬件版本,比如国行和港行,设备版本号不一 ...

  4. CPU性能分析工具原理

    转载请保留以下声明 作者:赵宗晟 出处:https://www.cnblogs.com/zhao-zongsheng/p/13067733.html 很多软件都要做性能分析和性能优化.很多语言都会有他 ...

  5. 2019-02-02 Python学习之死锁和Rlock

    死锁:"当一个线程永远地持有一个锁,并且其他线程都尝试去获得这个锁时,那么它们将永远被阻塞" e.g. import threading import time mutexboy ...

  6. (三)解决httpclient乱码

    原文链接:https://blog.csdn.net/justry_deng/article/details/81042379

  7. Spring IOC原理补充(循环依赖、Bean作用域等)

    文章目录 前言 正文 循环依赖 什么是循环依赖? Spring是如何解决循环依赖的? 作用域实现原理以及如何自定义作用域 作用域实现原理 自定义Scope BeanPostProcessor的执行时机 ...

  8. 循序渐进VUE+Element 前端应用开发(11)--- 图标的维护和使用

    在VUE+Element 前端应用中,图标是必不可少点缀界面的元素,因此整合一些常用的图标是非常必要的,还好Element界面组件里面提供了很多常见的图标,不过数量不是很多,应该是300个左右吧,因此 ...

  9. 利用bat文件打开浏览器指定网页,提示 windows找不到chrome.exe。请确定文件名是否正确,再试一次 的解决经历

      1.在网上找到一些bat命令,原来电脑可以正常使用,效果就是执行后打开谷歌浏览器并全屏展示某网页,但是在昨天换个一个电脑后发现不能用了,提示以下截图的错误 2.找了半天发现问题所在: 把chrom ...

  10. python django mkdir和makedirs的用法

    总结一下mkdir和makedirs的用法:      1.mkdir( path [,mode] )      作用:创建一个目录,可以是相对或者绝对路径,mode的默认模式是0777.      ...