洛谷 P3951 NOIP 2017 小凯的疑惑
洛谷 P3951 NOIP 2017 小凯的疑惑
题目描述
小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。每种金币小凯都有 无数个。在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品。
输入格式
两个正整数 \(a\) 和 \(b\),它们之间用一个空格隔开,表示小凯中金币的面值。
输出格式
一个正整数 \(N\),表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。
输入输出样例
输入 #1
3 7
输出 #1
11
说明/提示
【输入输出样例 1 说明】
小凯手中有面值为\(3\)和\(7\)的金币无数个,在不找零的前提下无法准确支付价值为\(2,4,5,8,11\) 的物品,其中最贵的物品价值为 \(11\),比\(11\) 贵的物品都能买到,比如:
\(12 = 3 \times 4 + 7 \times 0\)
\(13 = 3 \times 2 + 7 \times 1\)
\(14 = 3 \times 0 + 7 \times 2\)
\(15 = 3 \times 5 + 7 \times 0\)
【数据范围与约定】
对于 \(30\%\)的数据: \(1 \le a,b \le 50\)
对于 \(60\%\)的数据: \(1 \le a,b \le 10^4\)
对于\(100\%\)的数据:\(1 \le a,b \le 10^9\)
分析
我们不妨设 \(a<b\),答案为\(x\)
如果\(x\)可以被\(a\)和\(b\)表示出来的话,那么就有
\(x=ma+nb(m \geq 0,n \geq 0)\)
但是\(x\)不能表达成上面的式子,我们要使\(x\)最大,因为\(a<b\),所以令\(n=-1\)
而且\(ma\)不能被\(b\)整除,否则\(b\)又会多出一个因子
因此\(m_{max}=b-1\)
所以\(x=a(b-1)-b=ab-a-b\)
当\(a > b\)时推出的式子完全相同,因此最终的答案为
\(ab-a-b\)
代码
#include<cstdio>
int main(){
long long a,b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",a*b-a-b);
return 0;
}
洛谷 P3951 NOIP 2017 小凯的疑惑的更多相关文章
- 题解【洛谷P3951】[NOIP2017]小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- NOIP 2017 小凯的疑惑
# NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...
- NOIP 2017 小凯的疑惑(同余类)
题意 给出两个互质的数a,b问最大的不能被xa+yb(x,y>=0)表示的数.(a,b<=109) 题解 NOIPday1T1一道数论题,不知埋葬了多少人的梦想. 用同余类去解释. 我们依 ...
- 洛谷 P3960 [ NOIP 2017 ] 列队 —— 线段树
题目:https://www.luogu.org/problemnew/show/P3960 NOIP 题,不用很复杂的数据结构...但又参考了许多: 要求支持维护删除第 k 个和在末尾插入的数据结构 ...
- 洛谷 P2822 [ NOIP 2017 ] 组合数问题 —— 数学
题目:https://www.luogu.org/problemnew/show/P2822 阶乘太大,算不了: 但 k 只有 8 个质因子嘛,暴力60分: #include<iostream& ...
- 洛谷 P3953 [ NOIP 2017 ] 逛公园 —— 最短路DP
题目:https://www.luogu.org/problemnew/show/P3953 主要是看题解...还是觉得好难想啊... dfs DP,剩余容量的损耗是边权减去两点最短路差值...表示对 ...
- NOIp D1T1 小凯的疑惑
吐槽 果然让人很疑惑,这道题,对于我这种数学渣渣来说太不友好了,哪里想得到结论,猜也猜不到. 思路一 纯数学,见过的飞快切掉,没见过的就... 结论就是:已知$a,b$为大于$ 1 $的互质的正整数, ...
- 2017提高组D1T1 洛谷P3951 小凯的疑惑
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...
- 洛谷 P3951 小凯的疑惑 找规律
目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...
随机推荐
- PHP array_flip() 函数
------------恢复内容开始------------ 实例 反转数组中的键名和对应关联的键值: <?php$a1=array("a"=>"red&qu ...
- HTML <html> 标签
HTML <html> 标签 实例 简单的 HTML5 文档: <!DOCTYPE html><html>高佣联盟 www.cgewang.com<head& ...
- dp的本质
什么是真正的dp?有什么特点?怎么来搞. 最近遇到了一些以前的题目发现没有好好的理解就直接写了 大多都是书上的算法并不是自己真正的理解. 1 关于背包 我总结一下 可能 有助于对模型的更快发现 01 ...
- MPI运行时间测量
转载自:https://blog.csdn.net/silent56_th/article/details/80419314 翻译自:https://stackoverflow.com/questio ...
- Windows聚焦失效问题的解决办法
1. 设置Windows聚焦 步骤:任务栏右键 → 任务栏设置 → 锁屏界面 → 背景选择Windows聚焦 2. 解决Windows聚焦失效问题 设置完Windows聚焦之后,锁屏界面却没有变. 尝 ...
- Java基础高级篇 NIO
nio模型与io模型的对比 netty 是什么 怎么使用
- CentOS7安装MinIO教程,并在C#客户端WPF中实现监控上传进度
MinIO的详细介绍可以参考官网(https://min.io/product/overview). 简单来说它是一个实现了AWS S3标准的100%开源的,可商用的( Apache V2 licen ...
- 禁用 Spring Boot 中引入安全组件 spring-boot-starter-security 的方法
1.当我们通过 maven 或 gradle 引入了 Spring boot 的安全组件 spring-boot-starter-security,Spring boot 默认开启安全组件,这样我们就 ...
- C#LeetCode刷题之#110-平衡二叉树(Balanced Binary Tree)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4074 访问. 给定一个二叉树,判断它是否是高度平衡的二叉树. 本 ...
- LeetCode 763划分字母区间 详解
题目详情 字符串 S 由小写字母组成.我们要把这个字符串划分为尽可能多的片段,同一个字母只会出现在其中的一个片段.返回一个表示每个字符串片段的长度的列表. 示例 1: 输入: S = "ab ...