洛谷 P3951 NOIP 2017 小凯的疑惑

题目描述

小凯手中有两种面值的金币,两种面值均为正整数且彼此互素。每种金币小凯都有 无数个。在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的。现在小 凯想知道在无法准确支付的物品中,最贵的价值是多少金币?注意:输入数据保证存在 小凯无法准确支付的商品。

输入格式

两个正整数 \(a\) 和 \(b\),它们之间用一个空格隔开,表示小凯中金币的面值。

输出格式

一个正整数 \(N\),表示不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。

输入输出样例

输入 #1

3 7

输出 #1

11

说明/提示

【输入输出样例 1 说明】

小凯手中有面值为\(3\)和\(7\)的金币无数个,在不找零的前提下无法准确支付价值为\(2,4,5,8,11\) 的物品,其中最贵的物品价值为 \(11\),比\(11\) 贵的物品都能买到,比如:

\(12 = 3 \times 4 + 7 \times 0\)

\(13 = 3 \times 2 + 7 \times 1\)

\(14 = 3 \times 0 + 7 \times 2\)

\(15 = 3 \times 5 + 7 \times 0\)

【数据范围与约定】

对于 \(30\%\)的数据: \(1 \le a,b \le 50\)

对于 \(60\%\)的数据: \(1 \le a,b \le 10^4\)

对于\(100\%\)的数据:\(1 \le a,b \le 10^9\)

分析

我们不妨设 \(a<b\),答案为\(x\)

如果\(x\)可以被\(a\)和\(b\)表示出来的话,那么就有

\(x=ma+nb(m \geq 0,n \geq 0)\)

但是\(x\)不能表达成上面的式子,我们要使\(x\)最大,因为\(a<b\),所以令\(n=-1\)

而且\(ma\)不能被\(b\)整除,否则\(b\)又会多出一个因子

因此\(m_{max}=b-1\)

所以\(x=a(b-1)-b=ab-a-b\)

当\(a > b\)时推出的式子完全相同,因此最终的答案为

\(ab-a-b\)

代码

#include<cstdio>
int main(){
long long a,b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",a*b-a-b);
return 0;
}

洛谷 P3951 NOIP 2017 小凯的疑惑的更多相关文章

  1. 题解【洛谷P3951】[NOIP2017]小凯的疑惑

    题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...

  2. NOIP 2017 小凯的疑惑

    # NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...

  3. NOIP 2017 小凯的疑惑(同余类)

    题意 给出两个互质的数a,b问最大的不能被xa+yb(x,y>=0)表示的数.(a,b<=109) 题解 NOIPday1T1一道数论题,不知埋葬了多少人的梦想. 用同余类去解释. 我们依 ...

  4. 洛谷 P3960 [ NOIP 2017 ] 列队 —— 线段树

    题目:https://www.luogu.org/problemnew/show/P3960 NOIP 题,不用很复杂的数据结构...但又参考了许多: 要求支持维护删除第 k 个和在末尾插入的数据结构 ...

  5. 洛谷 P2822 [ NOIP 2017 ] 组合数问题 —— 数学

    题目:https://www.luogu.org/problemnew/show/P2822 阶乘太大,算不了: 但 k 只有 8 个质因子嘛,暴力60分: #include<iostream& ...

  6. 洛谷 P3953 [ NOIP 2017 ] 逛公园 —— 最短路DP

    题目:https://www.luogu.org/problemnew/show/P3953 主要是看题解...还是觉得好难想啊... dfs DP,剩余容量的损耗是边权减去两点最短路差值...表示对 ...

  7. NOIp D1T1 小凯的疑惑

    吐槽 果然让人很疑惑,这道题,对于我这种数学渣渣来说太不友好了,哪里想得到结论,猜也猜不到. 思路一 纯数学,见过的飞快切掉,没见过的就... 结论就是:已知$a,b$为大于$ 1 $的互质的正整数, ...

  8. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  9. 洛谷 P3951 小凯的疑惑 找规律

    目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...

随机推荐

  1. 微服务迁移记(五):WEB层搭建(3)-FreeMarker集成

    一.redis搭建 二.WEB层主要依赖包 三.FeignClient通用接口 以上三项,参考<微服务迁移记(五):WEB层搭建(1)> 四.SpringSecurity集成 参考:< ...

  2. pandas_查看数据特征和统计信息

    # 查看数据特征和统计信息 import pandas as pd # 读取文件 dataframe = pd.read_excel(r'C:\Users\lenovo\Desktop\总结\Pyth ...

  3. 使用Esxi虚拟化部署OpenWrt/HomeLede+扩容硬盘 保姆级教程

    本文介绍使用VMware虚拟化平台部署OpenWrt/HomeLede,并扩容固件硬盘的方法. 推荐使用虚拟化方式部署软路由,理由如下: 部署.升级.回退.扩容等操作非常方便,特别适合折腾 可以方便的 ...

  4. Python time tzset()方法

    描述 Python time tzset() 根据环境变量TZ重新初始化时间相关设置.高佣联盟 www.cgewang.com 标准TZ环境变量格式: std offset [dst [offset ...

  5. 剑指 Offer 58 - II. 左旋转字符串

    本题 题目链接 题目描述 我的题解 方法一:使用库函数 s.substring() 代码如下 public String reverseLeftWords(String s, int n) { ret ...

  6. mysqld_multi多实例部署

    mysql多实例部署 目录 mysql多实例部署 下载软件 配置用户和组并解压二进制程序至/usr/local下 创建实例数据存放的目录 初始化各实例 配置配置文件/etc/my.cnf 启动各实例 ...

  7. CSS页面布局与网格(下)

    3.二维布局:CSS Grid Layout CSS Grid Layout模块为了能在二维空间里控制元素的顺序.位置和大小而定义了一组CSS属性. 被设值为display: grid的元素叫网格容器 ...

  8. 【av68676164(p21-p22)】线程

    4.3.1 线程概念 线程的概念(Thread) 线程是可由CPU直接运行的实体 一个进程可以创建多个线程 多个线程可共享CPU可以实现并发运行 CreateThread() 功能:把一个函数创建为一 ...

  9. 18、Memento 备忘录模式

    例如:用于记录快照(顺势状态).存盘 1.Memento Memento设计模式是一种软件设计模式,用于将对象回滚到其先前状态.它是行为设计模式的一部分,与算法和对象之间的职责分配有关. 行为模式描述 ...

  10. SSH config语法关键字

    1.SSH config 语法关键字 host 别名 HostName 主机名(ip) User    用户(root就是一个用户) Port 端口(默认22) IdentityFile 密钥文件的路 ...