【noi 2.6_4982】踩方格(DP)
题意:一个无限大的方格矩阵,能向北、东、西三个方向走。问走N步共有多少种不同的方案。
解法: f[i]表示走 i 格的方案数。
状态转移方程推导如下——
设l[i],r[i],u[i]分别为第 i 步向西、东、北的方案数,f[i]为总方案数。
l[i]=l[i-1]+u[i-1], r[i]=r[i-1]+u[i-1], u[i]=l[i-1]+r[i-1]+u[i-1]
f[i]=l[i]+r[i]+u[i]
=2*l[i-1]+2*r[i-1]+3*u[i-1]
=2*f[i-1]+u[i-1]
=2*f[i-1]+f[i-2]
于是代码就非常简单了:
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6
7 int f[25];
8
9 int main()
10 {
11 int n;
12 scanf("%d",&n);
13 f[1]=3, f[2]=7;
14 for (int i=3;i<=n;i++)
15 f[i]=2*f[i-1]+f[i-2];
16 printf("%d\n",f[n]);
17 return 0;
18 }
【noi 2.6_4982】踩方格(DP)的更多相关文章
- poj 4982 踩方格
4982:踩方格 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 有一个方格矩阵,矩阵边界在无穷远处.我们做如下假设:a. 每走一步时,只能从当前方格移 ...
- noi 4982 踩方格
题目链接:http://noi.openjudge.cn/ch0206/4982/ 深搜很好写. DP:O(n) d[i] 为走 I 不的方案数, l[i],r[i],u[i]为第一步走 左,右,上, ...
- 【noi 2.6_8786】方格取数(DP)
题意:N*N的方格图每格有一个数值,要求从左上角每步往右或往下走到右下角,问走2次的最大和. 解法:走一次的很好想,而走2次,不可误以为先找到最大和的路,再找剩下的最大和的路就是正解.而应该认清动态规 ...
- OpenJ_Bailian 4103 踩方格(搜索 动态规划 )
题目传送门OpenJ_Bailian 4103 描述 有一个方格矩阵,矩阵边界在无穷远处.我们做如下假设:a. 每走一步时,只能从当前方格移动一格,走到某个相邻的方格上:b. 走过的格子立 ...
- 踩方格 OpenJ_Bailian - 4103
有一个方格矩阵,矩阵边界在无穷远处.我们做如下假设:a. 每走一步时,只能从当前方格移动一格,走到某个相邻的方格上:b. 走过的格子立即塌陷无法再走第二次:c. 只能向北.东.西三个 ...
- 百练4103:踩方格(DFS)
描述 有一个方格矩阵,矩阵边界在无穷远处.我们做如下假设:a. 每走一步时,只能从当前方格移动一格,走到某个相邻的方格上:b. 走过的格子立即塌陷无法再走第二次:c. 只能向北.东. ...
- 7.11 NOI模拟赛 graph 生成函数 dp 多项式
LINK:graph HDU题库里的原题 没做过自闭. 考虑dp 设\(f_{i,j}\)表示前i个点构成j个联通块是树的方案数. 对于一次询问答案即为\(\sum_{j}f_{n,j}j^k\) 考 ...
- 【noi 2.6_9271】奶牛散步(DP)
这题与前面的"踩方格"重复了,而且是大坑题!题目漏写了取模12345的条件! 详细解析请见我之前的博文--http://www.cnblogs.com/konjak/p/59368 ...
- 2016. 4.10 NOI codevs 动态规划练习
1.codevs1040 统计单词个数 1040 统计单词个数 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 De ...
随机推荐
- java8新特性之stream流
Stream 流是 Java 8 提供给开发者一套新的处理集合的API,他把我们将要处理的集合作为流,就像流水线一样,我们可以对其中的元素进行筛选,过滤,排序等中间操作,只不过这种操作更加简洁高效. ...
- windows鼠标右键添加快捷方式
[win]+[R] 输入regedit 打开路径:计算机\HKEY_CLASSES_ROOT\DesktopBackground\Shell 创建应用文件,这里以putty为例 右键 Shell 新建 ...
- 【ORA】ORA-01033,ORA-09968,ORA-01102
[oracle@oracle ~]$ imp xxxx/user file=/usr/local/src/666.dmp full=y buffer=40960000 Import: Release ...
- RCE - Pikachu
概述: 远程系统命令执行 一般出现这种漏洞,是因为应用系统从设计上需要给用户提供指定的远程命令操作的接口 比如我们常见的路由器.防火墙.入侵检测等设备的web管理界面上 一般会给用户提供一个ping操 ...
- 史上最全postgreSQL体系结构(转)
原文链接:https://cloud.tencent.com/developer/article/1469101 墨墨导读:本文主要从日志文件.参数文件.控制文件.数据文件.redo日志(WAL).后 ...
- centos7安装vsftpd最大的坑
1.检查用户和密码没有错误2.vsftpd.conf配置没有错误3.检查/etc/vsftpd/vsftpd.conf 里面pam_service_name =vsftpd4.终极boss查看vim ...
- AQS之ReentrantReadWriteLock写锁
用法 1.1 定义一个安全的list集合 public class LockDemo { ArrayList<Integer> arrayList = new ArrayList<& ...
- 集成 12 种协议、可于 USBC 端口的快充协议芯片IP2188
1. 特性 支持 12 种 USB 端口快充协议 支持 USB TypeC PD2.0/PD3.0/PPS DFP 协议 支持多种充电协议(QC3.0/QC2.0,FCP,SCP, AFC,MT ...
- 牛逼!MySQL 8.0 中的索引可以隐藏了…
MySQL 8.0 虽然发布很久了,但可能大家都停留在 5.7.x,甚至更老,其实 MySQL 8.0 新增了许多重磅新特性,比如栈长今天要介绍的 "隐藏索引" 或者 " ...
- SpringBoot单元测试的两种形式
@ 目录 前言 demo环境 springbootTest Junit 总结 前言 最近公司要求2021年所有的项目代码单元测试覆盖率要达到90%,作为刚毕业的小白来说这简直就是噩梦啊,springb ...