Description

Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出\(\Sigma gcd(i, N) (1 \leq i \leq N)\)。

Input

一个整数,为N。

Output

一个整数,为所求的答案。

Sample Input

6

Sample Output

15

Hint

对于60%的数据,\(0<N \leq 2^{16}\)

对于100%的数据,\(0<N \leq 2^{32}\)

Solution

记\(f(k)\)表示\(gcd(m,n)=k\)的\(m(m \leq n)\)的个数,因此\(gcd(m/k,n/k)=1\),于是有\(f(k)=\varphi (n/k)\).

故对于任意\(k|n\),\(k\)对答案的贡献为\(kf(k)=k \varphi (n/k)\),用线筛预处理出\(\sqrt n\)内的质数,然后求欧拉函数求和即可。

时间复杂度\(O(\sqrt n \log n)\)

Code

#include <stdio.h>
#include <math.h>
#define MN (1<<16)
#define R register
#define ll long long
#define file(x) freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);
#define end fclose(stdin);fclose(stdout)
ll n,ans;int phi[MN+5],pr[MN],pn,m;bool b[MN+5];
void pre(){
phi[1]=1;for (R int i=2; i<=m; ++i){
if (!b[i]){
pr[++pn]=i;
phi[i]=i-1;
}
for (R int j=1; j<=pn; ++j){
if (1ll*i*pr[j]>m) break;
b[i*pr[j]]=1;
if (i%pr[j]==0){
phi[i*pr[j]]=phi[i]*pr[j];
break;
}phi[i*pr[j]]=phi[i]*(pr[j]-1);
}
}
}
inline ll getphi(ll x){
R ll q=x,res=x;
for (R int i=1; i<=pn; ++i)
if (!(q%pr[i])){
res=res/pr[i]*phi[pr[i]];
while((!(q%pr[i]))) q/=pr[i];
}
if (q>1) res=res/q*(q-1);return res;
}
int main(){
scanf("%lld",&n);m=floor(sqrt(n));pre();
for (R int t=1; t<=m; ++t)
if (n%t==0){
ans+=t*getphi(n/t);
if (t*t<n) ans+=n/t*phi[t];
}printf("%lld\n",ans);
return 0;
}

【BZOJ2705】【Sdoi2012】Longge的问题的更多相关文章

  1. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  2. BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  3. 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N).   Solut ...

  4. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  5. bzoj2705: [SDOI2012]Longge的问题 欧拉定理

    题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...

  6. 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题

    ∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...

  7. [BZOJ2705][SDOI2012]Longge的问题 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...

  8. bzoj2705 [SDOI2012]Longge的问题——因数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 一开始自己想了半天... 有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd ...

  9. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

  10. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. C语言的第二次作业

    一.PTA实验作业 题目1. 计算分段函数 本题目要求计算下列分段函数f(x)的值: 1.本题代码 #include<stdio.h> #include<math.h> int ...

  2. 转:运行page页面时的事件执行顺序及页面的回发与否深度了解

    using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Secu ...

  3. Beta冲刺NO.5

    Beta冲刺 第五天 1. 昨天的困难 1.昨天的困难主要是在类的整理上,一些逻辑理不清,也有一些类写的太绝对了,扩展性就不那么好了,所以,昨天的困难就是在重构上. 页面结构太凌乱,之前没有统筹好具体 ...

  4. 201621123050 《Java程序设计》第10周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...

  5. 2017-2018-1 1623 bug终结者 冲刺005

    bug终结者 冲刺005 by 20162323 周楠 今日任务:理清游戏运行逻辑,GameView类为游戏核心代码 简要介绍 游戏中整个地图都是由数组组成 1.整个地图为16×16格,主要元素有墙. ...

  6. 201621123057 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 答: (普通方法 / 构造函数)重载. static . final.继承与多态.extends.object类.abstrac ...

  7. java实现同步的两种方式

    同步是多线程中的重要概念.同步的使用可以保证在多线程运行的环境中,程序不会产生设计之外的错误结果.同步的实现方式有两种,同步方法和同步块,这两种方式都要用到synchronized关键字. 给一个方法 ...

  8. 在django模板中添加jquery

    路径 /project_name /app_name /templates /index.html /project_name setting.py /static /js jquery.js 导入方 ...

  9. Python 实现火车票查询工具

    注意:由于 12306 的接口经常变化,课程内容可能很快过期,如果遇到接口问题,需要根据最新的接口对代码进行适当修改才可以完成实验. 一.实验简介 当你想查询一下火车票信息的时候,你还在上 12306 ...

  10. 点击tableViewCell,调用打电话的功能

    对于点击tableViewCell,调用打电话的功能,按照一般的方法,使用Appdelegate的OpenUrl的方法,使用前先使用UIAlertView展示,让用户选择是否拨打,但是发现了个简单的方 ...