【BZOJ2705】【Sdoi2012】Longge的问题
Description
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出\(\Sigma gcd(i, N) (1 \leq i \leq N)\)。
Input
一个整数,为N。
Output
一个整数,为所求的答案。
Sample Input
6
Sample Output
15
Hint
对于60%的数据,\(0<N \leq 2^{16}\)
对于100%的数据,\(0<N \leq 2^{32}\)
Solution
记\(f(k)\)表示\(gcd(m,n)=k\)的\(m(m \leq n)\)的个数,因此\(gcd(m/k,n/k)=1\),于是有\(f(k)=\varphi (n/k)\).
故对于任意\(k|n\),\(k\)对答案的贡献为\(kf(k)=k \varphi (n/k)\),用线筛预处理出\(\sqrt n\)内的质数,然后求欧拉函数求和即可。
时间复杂度\(O(\sqrt n \log n)\)
Code
#include <stdio.h>
#include <math.h>
#define MN (1<<16)
#define R register
#define ll long long
#define file(x) freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);
#define end fclose(stdin);fclose(stdout)
ll n,ans;int phi[MN+5],pr[MN],pn,m;bool b[MN+5];
void pre(){
phi[1]=1;for (R int i=2; i<=m; ++i){
if (!b[i]){
pr[++pn]=i;
phi[i]=i-1;
}
for (R int j=1; j<=pn; ++j){
if (1ll*i*pr[j]>m) break;
b[i*pr[j]]=1;
if (i%pr[j]==0){
phi[i*pr[j]]=phi[i]*pr[j];
break;
}phi[i*pr[j]]=phi[i]*(pr[j]-1);
}
}
}
inline ll getphi(ll x){
R ll q=x,res=x;
for (R int i=1; i<=pn; ++i)
if (!(q%pr[i])){
res=res/pr[i]*phi[pr[i]];
while((!(q%pr[i]))) q/=pr[i];
}
if (q>1) res=res/q*(q-1);return res;
}
int main(){
scanf("%lld",&n);m=floor(sqrt(n));pre();
for (R int t=1; t<=m; ++t)
if (n%t==0){
ans+=t*getphi(n/t);
if (t*t<n) ans+=n/t*phi[t];
}printf("%lld\n",ans);
return 0;
}
【BZOJ2705】【Sdoi2012】Longge的问题的更多相关文章
- BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】
BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...
- BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Solut ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- bzoj2705: [SDOI2012]Longge的问题 欧拉定理
题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...
- 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题
∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...
- [BZOJ2705][SDOI2012]Longge的问题 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\ ...
- bzoj2705 [SDOI2012]Longge的问题——因数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 一开始自己想了半天... 有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd ...
- 【bzoj2705】[SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2507 Solved: 1531[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- alpha-咸鱼冲刺day6-紫仪
总汇链接 一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 !!!QAQ可以做到跟数据库交互了!!!!先来撒花花!(然后继续甲板) (然后就没有进展了.翻车+1s) 四,问题困难 ...
- 如何解决python中使用flask时遇到的markupsafe._compat包缺失的问题
在使用python进行GUI的程序编写时,使用flask时出现错误: 在使用pip freeze进行查看已下载的包时显示MarkupSafe与Jinjia2都已安装: 在网上查阅一些资料后发现,在py ...
- 算法——算法时间复杂度的计算和大O阶的推导
在算法分析中,我们将语句总的执行次数记为T(n)进而分析T(n)随n的变化情况确认T(n)的数量级.一般情况下,T(n)随n增大变化最缓慢的算法为最优算法. 根据定义,T(n)的求法是很简单的,也就是 ...
- 团队作业4——第一次项目冲刺(Alpha版本)2017.11.16
第一次会议:2017-11-16 大家的任务完成的不错^_^,继续努力了. 上图: 忘记照了,额....... 会议主要内容: 1.登录功能的讨论 2. 代码统一 具体分工: 成员 计划任务 遇见难题 ...
- 使用Google 的 gson方式解析json
gson支持解析的类型还是比较全面的,包括JavaBean,List<JavaBean>,List<String>,Map等,使用起来也是比较方便,下面根据代码示例给出总结: ...
- EasyUI中DataGrid隔行改变背景颜色。
<table id="dg" class="easyui-datagrid" style="width: 1000px; height: 300 ...
- phalcon环境的搭建和dll扩展下载与选择
phalcon需要下载一个扩展的dll文件才能运行项目 其中需要注意dll放在一个php扩展目录中windows下php/ext/,还需要在两个Php.ini文件中增加扩展说明,一般只需要更改 D:\ ...
- Oracle数据库游标精解
游标 定义:标识结果集中数据行的一种容器(CURSOR),游标允许应用程序对查询语句返回的行结果集中的每一行进行相同或不同的操作,而不是一次对整个结果集进行同一种操作.实际上是一种能从包括多条数据记录 ...
- MSIL实用指南-生成接口
本篇讲解怎么样生成接口,即interface. 一.创建类型创建一个接口类型依旧用ModuleBuilder的DefineType方法,但是它的第二个参数必须要有TypeAttributes.Inte ...
- 原生JavaScript实现页面回到顶部的功能
/*如果想实现点击一个按钮让滚动条回到最顶部的功能,首先可能就会想到它是从底部位置移动到顶部的位置 它是一个运动的过程,只要知道当前位置(current Position)和想要到达的位置(targe ...