E. Rock Is Push

You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the bottom right cell (n,m). You can only move right or down, one cell per step. Moving right from a cell (x,y) takes you to the cell (x,y+1), while moving down takes you to the cell (x+1,y).

Some cells of the labyrinth contain rocks. When you move to a cell with rock, the rock is pushed to the next cell in the direction you're moving. If the next cell contains a rock, it gets pushed further, and so on.

The labyrinth is surrounded by impenetrable walls, thus any move that would put you or any rock outside of the labyrinth is illegal.

Count the number of different legal paths you can take from the start to the goal modulo 109+7. Two paths are considered different if there is at least one cell that is visited in one path, but not visited in the other.

Input

The first line contains two integers n,m — dimensions of the labyrinth (1≤n,m≤2000).

Next n lines describe the labyrinth. Each of these lines contains m characters. The j-th character of the i-th of these lines is equal to "R" if the cell (i,j) contains a rock, or "." if the cell (i,j) is empty.

It is guaranteed that the starting cell (1,1) is empty.

Output

Print a single integer — the number of different legal paths from (1,1) to (n,m) modulo 109+7.

Examples

input

1 1

.

output

1

input

2 3

...

..R

output

0

input

4 4

...R

.RR.

.RR.

R...

output

4

Note

In the first sample case we can't (and don't have to) move, hence the only path consists of a single cell (1,1).

In the second sample case the goal is blocked and is unreachable.

Illustrations for the third sample case can be found here: https://subdomain.codeforc.es/menci/assets/rounds/1225/index.html

题意

一个n*m的矩阵,里面有一堆箱子,你可以推箱子,连续的箱子你也能推动。

问你从(1,1)到(n,m)有多少种不同路径的方案个数。

题解

定义:

dp[i][j][0]表示从(i,j)往下走到达终点的方案数。

dp[i][j][1]表示从(i,j)往右走到达终点的方案数。

比较显然的

dp[i][j][0]=dp[i+1][j][1]+dp[i+2][j][1]+....+dp[i+x][j][1],直到(i+x+1,j)是一个箱子推到底了,不能再推箱子了。

同理dp[i][j][1]也是如此。

显然后面这坨可以用前缀和优化一下,然后就可以变成n^2的dp转移了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
int n,m;
const int mod = 1e9+7;
char a[maxn][maxn];
// 0 for down;1 for right
int num[maxn][maxn][2],dp[maxn][maxn][2],sum[maxn][maxn][2];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%s",a[i]+1);
}
if(n==1&&m==1&&a[1][1]=='.'){
cout<<"1"<<endl;
return 0;
}
if(a[1][1]=='R'||a[n][m]=='R'){
cout<<"0"<<endl;
return 0;
}
for(int i=n;i>=1;i--){
for(int j=m;j>=1;j--){
if(a[i][j]=='R'){
num[i][j][0]+=1;
num[i][j][1]+=1;
}
num[i][j][0]+=num[i+1][j][0];
num[i][j][1]+=num[i][j+1][1];
}
}
dp[n][m][0]=1;dp[n][m][1]=1;sum[n][m][0]=1;sum[n][m][1]=1;
for(int i=n;i>=1;i--){
for(int j=m;j>=1;j--){
if(i==n&&j==m)continue;
dp[i][j][0]=(sum[i+1][j][0]-sum[n-num[i+1][j][0]+1][j][0])%mod;
dp[i][j][1]=(sum[i][j+1][1]-sum[i][m-num[i][j+1][1]+1][1])%mod;
sum[i][j][0]=(sum[i+1][j][0]+dp[i][j][1])%mod;
sum[i][j][1]=(sum[i][j+1][1]+dp[i][j][0])%mod;
}
}
cout<<(dp[1][1][0]+dp[1][1][1]+2ll*mod)%mod<<endl;
}

Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)

    A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...

  2. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products

    链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...

  3. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary

    链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...

  4. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)

    链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...

  5. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things

    链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...

  6. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题

    F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...

  7. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法

    B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...

  8. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题

    A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...

  9. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力

    D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...

随机推荐

  1. iptraf: command not found

    在Linux上安装iptraf,然后执行命令时报错,iptraf: command not found 解决办法:iptraf-ng包的二进制文件是iptraf-ng.使用命令iptraf-ng即可 ...

  2. 从Python安装到语法基础,这才是初学者都能懂的爬虫教程

    Python和PyCharm的安装:学会Python和PyCharm的安装方法 变量和字符串:学会使用变量和字符串的基本用法 函数与控制语句:学会Python循环.判断语句.循环语句和函数的使用 Py ...

  3. MySQL for OPS 10:MyCAT 分布式架构

    写在前面的话 在学习的索引的时候,有提到,当数据表数据达到 800W 的时候,索引的性能就开始逐步下降.对于一个公司而言,主要业务数据表达到 1000W 都很容易.同时这张表一般都是业务常用的表,操作 ...

  4. GO的执行原理以及GO命令

    Go的执行原理以及Go的命令 一.Go的源码文件 Go 的源码文件分类: 如上图,分为三类: 1.命令源码文件: 声明自己属于 main 代码包.包含无参数声明和结果声明的 main 函数. 命令源码 ...

  5. 【Ajax】Ajax入门总结

    目录 Ajax( Asynchronous JavaScript and XML ) 向服务器发送请求 服务器回应请求 本文内容总结自 w3cschool: https://www.w3school. ...

  6. C# MediaPlayer

    using System.Windows.Media; using Newtonsoft.Json; using System.ComponentModel; namespace ConsoleApp ...

  7. 最近的项目系之2——core3.0整合Autofac

    1.前言 core3.0与之前版本相比,有一些brokenchanges,那周边一些配套组件往往也难逃brokenchanges,Autofac也不例外.这里重点关注core整合Autofac,与之前 ...

  8. php 利用curl_*测试数据并发

    工作时遇到一个数据并发问题,因为上线之前没有测试数据并发,导致有时候网络比较差的时候导致数据重复插入数据库 , 所以利用curl_*函数专门写了一个测试数据并发的测试用例,如下: function t ...

  9. Java生鲜电商平台-微服务架构概述

    Java生鲜电商平台-微服务架构概述 单体架构存在的问题 在传统的软件技术架构系统中,基本上将业务功能集中在单一应用内,或者是单一进程中.尽管现代化的软件架构理论以及设计原则已推广多年,但实际技术衍化 ...

  10. react网页版聊天|仿微信、微博web版|react+pc端仿微信实例

    一.项目介绍 基于react+react-dom+react-router-dom+redux+react-redux+webpack2.0+nodejs等技术混合开发的仿微信web端聊天室react ...