在 parameters.py 中,定义了各类参数。

 # training data directory
TRAINING_DATA_DIR = './data/' # checkpoint directory
CHECKPOINT_DIR = './training_checkpoints/' # training details
BATCH_SIZE = 16
BUFFER_SIZE = 128
EPOCHS = 15

在 numpy_dataset.py 中,创建了 5000 组训练数据集,模拟 y = x^3 + 1,并二进制格式写入文件。

 from parameters import TRAINING_DATA_DIR

 import numpy as np
import matplotlib.pyplot as plt
import os # create training data
X = np.linspace(-1, 1, 5000)
np.random.shuffle(X)
y = X ** 3 + 1 + np.random.normal(0, 0.01, (5000,)) # plot training data
plt.scatter(X, y)
plt.show() # save data
if not os.path.exists(TRAINING_DATA_DIR):
os.makedirs(TRAINING_DATA_DIR) X.tofile(os.path.join(TRAINING_DATA_DIR + 'training_data_X.bin'))
y.tofile(os.path.join(TRAINING_DATA_DIR + 'training_data_y.bin'))


在 subclassed_model.py 中,通过对 tf.keras.models.Model 进行子类化,设计了两个自定义模型。

 import tensorflow as tf
tf.enable_eager_execution() # model definition
class Encoder(tf.keras.models.Model):
def __init__(self):
super(Encoder, self).__init__()
self.fc1 = tf.keras.layers.Dense(units=16, activation='relu')
self.fc2 = tf.keras.layers.Dense(units=8, activation='relu') def call(self, inputs):
r = self.fc1(inputs)
return self.fc2(r) class Decoder(tf.keras.models.Model):
def __init__(self):
super(Decoder, self).__init__()
self.fc = tf.keras.layers.Dense(units=1, activation=None) def call(self, inputs):
return self.fc(inputs)

在 loss_function.py 中,定义了损失函数。

 import tensorflow as tf
tf.enable_eager_execution() def loss(real, pred):
return tf.losses.mean_squared_error(labels=real, predictions=pred)

在 training.py 中,使用在 numpy_dataset.py 中创建的数据集训练模型,之后使用 model.save_weights() 保存 Keras Subclassed Model 模型,并创建验证集验证模型。

 from parameters import TRAINING_DATA_DIR, CHECKPOINT_DIR, BATCH_SIZE, BUFFER_SIZE, EPOCHS
from subclassed_model import *
from loss_function import loss import os
import numpy as np
import matplotlib.pyplot as plt # load training data
training_X = np.fromfile(os.path.join(TRAINING_DATA_DIR, 'training_data_X.bin'), dtype=np.float64)
training_y = np.fromfile(os.path.join(TRAINING_DATA_DIR, 'training_data_y.bin'), dtype=np.float64) # plot training data
plt.scatter(training_X, training_y)
plt.show() # training dataset
training_dataset = tf.data.Dataset.from_tensor_slices((training_X, training_y)).batch(BATCH_SIZE).shuffle(BUFFER_SIZE) # model instance
encoder = Encoder()
decoder = Decoder() # optimizer
optimizer = tf.train.AdamOptimizer() # checkpoint
checkpoint_prefix_encoder = os.path.join(CHECKPOINT_DIR, 'encoder/', 'ckpt')
checkpoint_prefix_decoder = os.path.join(CHECKPOINT_DIR, 'decoder/', 'ckpt') if not os.path.exists(os.path.dirname(checkpoint_prefix_encoder)):
os.makedirs(os.path.dirname(checkpoint_prefix_encoder))
if not os.path.exists(os.path.dirname(checkpoint_prefix_decoder)):
os.makedirs(os.path.dirname(checkpoint_prefix_decoder)) # training step
for epoch in range(EPOCHS):
epoch_loss = 0 for (batch, (tx, ty)) in enumerate(training_dataset):
x = tf.cast(tx, tf.float32)
y = tf.cast(ty, tf.float32)
x = tf.expand_dims(x, axis=1) # tf.Tensor([...], shape=(BATCH_SIZE, 1), dtype=float32)
y = tf.expand_dims(y, axis=1) # tf.Tensor([...], shape=(BATCH_SIZE, 1), dtype=float32) with tf.GradientTape() as tape:
y_ = encoder(x) # tf.Tensor([...], shape=(BATCH_SIZE, 8), dtype=float32)
prediction = decoder(y_) # tf.Tensor([...], shape=(BATCH_SIZE, 1), dtype=float32)
batch_loss = loss(real=y, pred=prediction) variables = encoder.variables + decoder.variables
grads = tape.gradient(batch_loss, variables)
optimizer.apply_gradients(zip(grads, variables), global_step=tf.train.get_or_create_global_step()) epoch_loss += batch_loss if (batch + 1) % 100 == 0:
print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
batch + 1,
batch_loss.numpy())) print('Epoch {} Loss {:.4f}'.format(epoch + 1,
epoch_loss / len(training_X))) if (epoch + 1) % 5 == 0:
encoder.save_weights(checkpoint_prefix_encoder)
decoder.save_weights(checkpoint_prefix_decoder) # create evaluation data
X = np.linspace(-1, 1, 3000)
np.random.shuffle(X) evaluation_X = tf.data.Dataset.from_tensor_slices(X).batch(BATCH_SIZE)
ey = [] for (batch, ex) in enumerate(evaluation_X):
x = tf.cast(ex, tf.float32)
x = tf.expand_dims(x, axis=1)
prediction = decoder(encoder(x))
for i in range(len(prediction.numpy())):
ey.append(prediction.numpy()[i]) plt.scatter(X, ey)
plt.show() # evaluate
eval_x = [[0.5]]
tensor_x = tf.convert_to_tensor(eval_x)
print(decoder(encoder(tensor_x)))

验证集评价结果如下图所示。

使用测试样例 eval_x 进行测试,测试结果如下。

tf.Tensor([[1.122567]], shape=(1, 1), dtype=float32)

在 evaluate.py 中,使用 model.load_weights() 恢复 Keras Subclassed Model 模型,并在验证集上进行验证,验证结果如下图所示。

 from parameters import CHECKPOINT_DIR, BATCH_SIZE
from subclassed_model import * import os
import numpy as np
import matplotlib.pyplot as plt # load model
enc = Encoder()
dec = Decoder() enc.load_weights(tf.train.latest_checkpoint(os.path.join(CHECKPOINT_DIR, 'encoder/')))
dec.load_weights(tf.train.latest_checkpoint(os.path.join(CHECKPOINT_DIR, 'decoder/'))) # create evaluation data
X = np.linspace(-1, 1, 3000)
np.random.shuffle(X) evaluation_X = tf.data.Dataset.from_tensor_slices(X).batch(BATCH_SIZE)
ey = [] for (batch, ex) in enumerate(evaluation_X):
x = tf.cast(ex, tf.float32)
x = tf.expand_dims(x, axis=1)
prediction = dec(enc(x))
for i in range(len(prediction.numpy())):
ey.append(prediction.numpy()[i]) plt.scatter(X, ey)
plt.show() # evaluate
eval_x = [[0.5]]
tensor_x = tf.convert_to_tensor(eval_x)
print(dec(enc(tensor_x))) # model summary
enc.summary()
dec.summary()

使用测试样例 eval_x 进行测试,测试结果如下。

tf.Tensor([[1.122567]], shape=(1, 1), dtype=float32)

恢复模型的测试结果,与训练后模型的测试结果一致,且无需 build 模型。


版权声明:本文为博主原创文章,欢迎转载,转载请注明作者及原文出处!

[Tensorflow] 使用 model.save_weights() 保存 / 加载 Keras Subclassed Model的更多相关文章

  1. [Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model

    在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager ...

  2. Tensorflow 模型持久化saver及加载图结构

    主要内容: 1. 直接保存,加载模型; (可以指定加载,保存的var_list) 2. 加载,保存指定变量的模型 3. slim加载模型使用 4. 加载模型图结构和参数等 tensorflow 恢复部 ...

  3. docker 保存 加载(导入 导出镜像

    tensorflow 的docker镜像很大,pull一次由于墙经常失败.其实docker 可以将镜像导出再导入. 保存加载(tensorflow)镜像 1) 查看镜像 docker images 如 ...

  4. gensim Word2Vec 训练和使用(Model一定要加载到内存中,节省时间!!!)

    训练模型利用gensim.models.Word2Vec(sentences)建立词向量模型该构造函数执行了三个步骤:建立一个空的模型对象,遍历一次语料库建立词典,第二次遍历语料库建立神经网络模型可以 ...

  5. 优化tableView加载cell与model的过程

    优化tableView加载cell与model的过程 效果图 说明 1. 用多态的特性来优化tableView加载cell与model的过程 2. swift写起来果然要比Objective-C简洁了 ...

  6. [Tensorflow] 使用 model.save_weights() 保存 Keras Subclassed Model

    import numpy as np import matplotlib.pyplot as plt import os import time import tensorflow as tf tf. ...

  7. Tensorflow 2.0 datasets数据加载

    导入包 import tensorflow as tf from tensorflow import keras 加载数据 tensorflow可以调用keras自带的datasets,很方便,就是有 ...

  8. C# DataGridVie利用model特性动态加载列

    今天闲来无事看到ORm的特性映射sql语句.我就想到datagridview也可以用这个来动态添加列.这样就不用每次都去界面上点开界面填列了. 代码简漏希望有人看到了能指点一二. 先定义好Datagr ...

  9. docker 保存,加载,导入,导出 命令

    持久化docker的镜像或容器的方法 docker的镜像和容器可以有两种方式来导出 docker save #ID or #Name docker export #ID or #Name docker ...

随机推荐

  1. python_字符串方法

    1.字符串大小写转 value = "wangdianchao" # 转换为大写 big_value = value.upper() print(big_value) # 转换为小 ...

  2. ASP.Net模拟用户 System.Security.Principal

    一.概述 在实际的项目开发中,我们可能会需要调用一些非托管程序,而有些非托管程序需要有更高的身份权限才能正确执行.本文介绍了如何让IIS承载的ASP.NET网站以特定的账户执行,比如Administr ...

  3. Java锁--公平锁

    转载请注明出处:http://www.cnblogs.com/skywang12345/p/3496147.html 基本概念 本章,我们会讲解“线程获取公平锁”的原理:在讲解之前,需要了解几个基本概 ...

  4. ppt打不开,显示发现文件中的内容有问题。可尝试修复此演示文稿

    ppt打不开,显示发现文件中的内容有问题.可尝试修复此演示文稿 PPT发现要打开的文件有问题,修复后无法打开该文件 解决方法: 主要是因为文件是网络下载的,office自动锁定了文件(默认不可编辑). ...

  5. [Google Guava] 6-字符串处理:分割,连接,填充

    原文链接 译文链接 译者:沈义扬,校对:丁一 连接器[Joiner] 用分隔符把字符串序列连接起来也可能会遇上不必要的麻烦.如果字符串序列中含有null,那连接操作会更难.Fluent风格的Joine ...

  6. 002_C/C++笔试题_简单算法程序

    (一)冒泡排序法 #include <iostream> using namespace std; void bubblesort(int a[], int m); int main(vo ...

  7. 安装Discuz

    1.下载Discuz 版本文件 http://download.comsenz.com/DiscuzX/3.2/Discuz_X3.2_SC_GBK.zip 2.下载PHP http://window ...

  8. webservice三要素

    1. 2. 3.

  9. 分页——为Mybatis配置PageHelper

    1.pom.xml追加 pagehelper : 4.1.4 2.mappers.xml中追加 <plugins> <plugin interceptor="com.git ...

  10. 五子棋AI教程

    https://github.com/Chuck-Ai/gobang 我写了非常详细的中文教程,教你如何一步步编写自己的五子棋AI: 五子棋AI设计教程第二版一:前言 五子棋AI设计教程第二版二:博弈 ...