在 parameters.py 中,定义了各类参数。

 # training data directory
TRAINING_DATA_DIR = './data/' # checkpoint directory
CHECKPOINT_DIR = './training_checkpoints/' # training details
BATCH_SIZE = 16
BUFFER_SIZE = 128
EPOCHS = 15

在 numpy_dataset.py 中,创建了 5000 组训练数据集,模拟 y = x^3 + 1,并二进制格式写入文件。

 from parameters import TRAINING_DATA_DIR

 import numpy as np
import matplotlib.pyplot as plt
import os # create training data
X = np.linspace(-1, 1, 5000)
np.random.shuffle(X)
y = X ** 3 + 1 + np.random.normal(0, 0.01, (5000,)) # plot training data
plt.scatter(X, y)
plt.show() # save data
if not os.path.exists(TRAINING_DATA_DIR):
os.makedirs(TRAINING_DATA_DIR) X.tofile(os.path.join(TRAINING_DATA_DIR + 'training_data_X.bin'))
y.tofile(os.path.join(TRAINING_DATA_DIR + 'training_data_y.bin'))


在 subclassed_model.py 中,通过对 tf.keras.models.Model 进行子类化,设计了两个自定义模型。

 import tensorflow as tf
tf.enable_eager_execution() # model definition
class Encoder(tf.keras.models.Model):
def __init__(self):
super(Encoder, self).__init__()
self.fc1 = tf.keras.layers.Dense(units=16, activation='relu')
self.fc2 = tf.keras.layers.Dense(units=8, activation='relu') def call(self, inputs):
r = self.fc1(inputs)
return self.fc2(r) class Decoder(tf.keras.models.Model):
def __init__(self):
super(Decoder, self).__init__()
self.fc = tf.keras.layers.Dense(units=1, activation=None) def call(self, inputs):
return self.fc(inputs)

在 loss_function.py 中,定义了损失函数。

 import tensorflow as tf
tf.enable_eager_execution() def loss(real, pred):
return tf.losses.mean_squared_error(labels=real, predictions=pred)

在 training.py 中,使用在 numpy_dataset.py 中创建的数据集训练模型,之后使用 model.save_weights() 保存 Keras Subclassed Model 模型,并创建验证集验证模型。

 from parameters import TRAINING_DATA_DIR, CHECKPOINT_DIR, BATCH_SIZE, BUFFER_SIZE, EPOCHS
from subclassed_model import *
from loss_function import loss import os
import numpy as np
import matplotlib.pyplot as plt # load training data
training_X = np.fromfile(os.path.join(TRAINING_DATA_DIR, 'training_data_X.bin'), dtype=np.float64)
training_y = np.fromfile(os.path.join(TRAINING_DATA_DIR, 'training_data_y.bin'), dtype=np.float64) # plot training data
plt.scatter(training_X, training_y)
plt.show() # training dataset
training_dataset = tf.data.Dataset.from_tensor_slices((training_X, training_y)).batch(BATCH_SIZE).shuffle(BUFFER_SIZE) # model instance
encoder = Encoder()
decoder = Decoder() # optimizer
optimizer = tf.train.AdamOptimizer() # checkpoint
checkpoint_prefix_encoder = os.path.join(CHECKPOINT_DIR, 'encoder/', 'ckpt')
checkpoint_prefix_decoder = os.path.join(CHECKPOINT_DIR, 'decoder/', 'ckpt') if not os.path.exists(os.path.dirname(checkpoint_prefix_encoder)):
os.makedirs(os.path.dirname(checkpoint_prefix_encoder))
if not os.path.exists(os.path.dirname(checkpoint_prefix_decoder)):
os.makedirs(os.path.dirname(checkpoint_prefix_decoder)) # training step
for epoch in range(EPOCHS):
epoch_loss = 0 for (batch, (tx, ty)) in enumerate(training_dataset):
x = tf.cast(tx, tf.float32)
y = tf.cast(ty, tf.float32)
x = tf.expand_dims(x, axis=1) # tf.Tensor([...], shape=(BATCH_SIZE, 1), dtype=float32)
y = tf.expand_dims(y, axis=1) # tf.Tensor([...], shape=(BATCH_SIZE, 1), dtype=float32) with tf.GradientTape() as tape:
y_ = encoder(x) # tf.Tensor([...], shape=(BATCH_SIZE, 8), dtype=float32)
prediction = decoder(y_) # tf.Tensor([...], shape=(BATCH_SIZE, 1), dtype=float32)
batch_loss = loss(real=y, pred=prediction) variables = encoder.variables + decoder.variables
grads = tape.gradient(batch_loss, variables)
optimizer.apply_gradients(zip(grads, variables), global_step=tf.train.get_or_create_global_step()) epoch_loss += batch_loss if (batch + 1) % 100 == 0:
print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
batch + 1,
batch_loss.numpy())) print('Epoch {} Loss {:.4f}'.format(epoch + 1,
epoch_loss / len(training_X))) if (epoch + 1) % 5 == 0:
encoder.save_weights(checkpoint_prefix_encoder)
decoder.save_weights(checkpoint_prefix_decoder) # create evaluation data
X = np.linspace(-1, 1, 3000)
np.random.shuffle(X) evaluation_X = tf.data.Dataset.from_tensor_slices(X).batch(BATCH_SIZE)
ey = [] for (batch, ex) in enumerate(evaluation_X):
x = tf.cast(ex, tf.float32)
x = tf.expand_dims(x, axis=1)
prediction = decoder(encoder(x))
for i in range(len(prediction.numpy())):
ey.append(prediction.numpy()[i]) plt.scatter(X, ey)
plt.show() # evaluate
eval_x = [[0.5]]
tensor_x = tf.convert_to_tensor(eval_x)
print(decoder(encoder(tensor_x)))

验证集评价结果如下图所示。

使用测试样例 eval_x 进行测试,测试结果如下。

tf.Tensor([[1.122567]], shape=(1, 1), dtype=float32)

在 evaluate.py 中,使用 model.load_weights() 恢复 Keras Subclassed Model 模型,并在验证集上进行验证,验证结果如下图所示。

 from parameters import CHECKPOINT_DIR, BATCH_SIZE
from subclassed_model import * import os
import numpy as np
import matplotlib.pyplot as plt # load model
enc = Encoder()
dec = Decoder() enc.load_weights(tf.train.latest_checkpoint(os.path.join(CHECKPOINT_DIR, 'encoder/')))
dec.load_weights(tf.train.latest_checkpoint(os.path.join(CHECKPOINT_DIR, 'decoder/'))) # create evaluation data
X = np.linspace(-1, 1, 3000)
np.random.shuffle(X) evaluation_X = tf.data.Dataset.from_tensor_slices(X).batch(BATCH_SIZE)
ey = [] for (batch, ex) in enumerate(evaluation_X):
x = tf.cast(ex, tf.float32)
x = tf.expand_dims(x, axis=1)
prediction = dec(enc(x))
for i in range(len(prediction.numpy())):
ey.append(prediction.numpy()[i]) plt.scatter(X, ey)
plt.show() # evaluate
eval_x = [[0.5]]
tensor_x = tf.convert_to_tensor(eval_x)
print(dec(enc(tensor_x))) # model summary
enc.summary()
dec.summary()

使用测试样例 eval_x 进行测试,测试结果如下。

tf.Tensor([[1.122567]], shape=(1, 1), dtype=float32)

恢复模型的测试结果,与训练后模型的测试结果一致,且无需 build 模型。


版权声明:本文为博主原创文章,欢迎转载,转载请注明作者及原文出处!

[Tensorflow] 使用 model.save_weights() 保存 / 加载 Keras Subclassed Model的更多相关文章

  1. [Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model

    在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager ...

  2. Tensorflow 模型持久化saver及加载图结构

    主要内容: 1. 直接保存,加载模型; (可以指定加载,保存的var_list) 2. 加载,保存指定变量的模型 3. slim加载模型使用 4. 加载模型图结构和参数等 tensorflow 恢复部 ...

  3. docker 保存 加载(导入 导出镜像

    tensorflow 的docker镜像很大,pull一次由于墙经常失败.其实docker 可以将镜像导出再导入. 保存加载(tensorflow)镜像 1) 查看镜像 docker images 如 ...

  4. gensim Word2Vec 训练和使用(Model一定要加载到内存中,节省时间!!!)

    训练模型利用gensim.models.Word2Vec(sentences)建立词向量模型该构造函数执行了三个步骤:建立一个空的模型对象,遍历一次语料库建立词典,第二次遍历语料库建立神经网络模型可以 ...

  5. 优化tableView加载cell与model的过程

    优化tableView加载cell与model的过程 效果图 说明 1. 用多态的特性来优化tableView加载cell与model的过程 2. swift写起来果然要比Objective-C简洁了 ...

  6. [Tensorflow] 使用 model.save_weights() 保存 Keras Subclassed Model

    import numpy as np import matplotlib.pyplot as plt import os import time import tensorflow as tf tf. ...

  7. Tensorflow 2.0 datasets数据加载

    导入包 import tensorflow as tf from tensorflow import keras 加载数据 tensorflow可以调用keras自带的datasets,很方便,就是有 ...

  8. C# DataGridVie利用model特性动态加载列

    今天闲来无事看到ORm的特性映射sql语句.我就想到datagridview也可以用这个来动态添加列.这样就不用每次都去界面上点开界面填列了. 代码简漏希望有人看到了能指点一二. 先定义好Datagr ...

  9. docker 保存,加载,导入,导出 命令

    持久化docker的镜像或容器的方法 docker的镜像和容器可以有两种方式来导出 docker save #ID or #Name docker export #ID or #Name docker ...

随机推荐

  1. Vue入门——v-if和v-show

    v-if 特点:每次都会重新删除或创元素 有较高的切换性能消耗 v-show 特点:每次不会重新进行DOM的删除和创建操作,只是切换了元素的display:none样式 有较高的初始渲染消耗

  2. EL表达式,JSP内置对象

    基本语法格式 EL都是以 ${ 为起始.以} 为结尾的 ${ EL Expression} 示例: ${ “Helloworld” }  //输出字符串常量 ${ str }  //输出字符串变量st ...

  3. 部署logstash节点

    .部署Logstash节点 1.查看系统环境: [root@Logstash ~]# hostname Logstash [root@Logstash ~]# cat /etc/redhat-rele ...

  4. 前端知识体系:JavaScript基础-原型和原型链-new一个对象的详细过程,手动实现一个 new操作符

    可以描述 new一个对象的详细过程,手动实现一个 new操作符 1. new 一个对象的详细过程:(原文地址) 首先我们看下new Person输出什么? var Person = function( ...

  5. 数字pid笔记(2)

    void pid_Cal(void) { //float index = 0; IncPid * p = NULL; p = &g_PID_Inc; p->SetVal = sys_pa ...

  6. leetcode解题报告(2):Remove Duplicates from Sorted ArrayII

    描述 Follow up for "Remove Duplicates": What if duplicates are allowed at most twice? For ex ...

  7. 做uart 实验时,run configure 只能选择jtag_uart 而没有uart

    使用的是nios ii 13 版本.直接在nios 软件上运行时程序能够执行,其中已经配置了stdin stderr stdout为jtag_uart.run configure 里面的byte st ...

  8. ECMAScript 5.0 基础语法(上)

    银子: 一般来说,一门编程语言的基础语法都是大同小异的.比如,python的基础语法,包括:数据类型,变量,作用域,运算符,流程控制(if...else...语句),循环,编码,数据类型的操作(增删改 ...

  9. 在centos7上使用packstack安装openstack

    简介 Packstack主要是由Redhat推出的用于概念验证(PoC)环境快速部署的工具.Packstack是一个命令行工具,它使用Python封装了Puppet模块,通过SSH在服务器上部署Ope ...

  10. 2019.6.28 校内测试 T4 【音乐会】达拉崩吧·上

    考试的一道附加题~ 一看题目描述:把区间[l,r]里每个数异或上x,求区间[l,r]里所有数的异或和,这明显的要用数据结构或RMQ吧. 恩,所以正解就是线段树啦,至于树状数组行与否,不知道~ wate ...