poj 1953 World Cup Noise (dp)
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 16774 | Accepted: 8243 |
Description
"KO-RE-A, KO-RE-A" shout 54.000 happy football fans after their team has reached the semifinals of the FIFA World Cup in their home country. But although their excitement is real, the Korean people are still very organized by nature. For example, they have organized huge trumpets (that sound like blowing a ship's horn) to support their team playing on the field. The fans want to keep the level of noise constant throughout the match.
The trumpets are operated by compressed gas. However, if you blow the trumpet for 2 seconds without stopping it will break. So when the trumpet makes noise, everything is okay, but in a pause of the trumpet,the fans must chant "KO-RE-A"!
Before the match, a group of fans gathers and decides on a chanting pattern. The pattern is a sequence of 0's and 1's which is interpreted in the following way: If the pattern shows a 1, the trumpet is blown. If it shows a 0, the fans chant "KO-RE-A". To ensure that the trumpet will not break, the pattern is not allowed to have two consecutive 1's in it.
Problem
Given a positive integer n, determine the number of different chanting patterns of this length, i.e., determine the number of n-bit sequences that contain no adjacent 1's. For example, for n = 3 the answer is 5 (sequences 000, 001, 010, 100, 101 are acceptable while 011, 110, 111 are not).
Input
For each scenario, you are given a single positive integer less than 45 on a line by itself.
Output
Sample Input
2
3
1
Sample Output
Scenario #1:
5 Scenario #2:
2
分析:result[i]存储 i位二进制数中没有相邻的1的个数。计算result[i],如果在result[i-1]中的各个数后加0,则都满足条件,如果在result[i-1]中的各个数后加1,要满足条件则result[i-1]中的数的最后一位必须是0,即是result[i-2]中各个数加0后的结果。所以
result[i] = result[i - 1] + result[i - 2]
其中result[1] 等于2,result[2]等于3,然后就是个斐波那契数列。
Java AC 代码
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int testNum = sc.nextInt();
int[] result;
for(int i = 1; i <= testNum; i++) {
int bitNum = sc.nextInt();
result = new int[bitNum + 1];
if(bitNum == 1) {
System.out.println("Scenario #" + i + ":");
System.out.println(2);
System.out.println("");
continue;
}
result[1] = 2;
result[2] = 3;
for(int j = 3; j <= bitNum; j++) {
result[j] = result[j - 1] + result[j - 2];
}
System.out.println("Scenario #" + i + ":");
System.out.println(result[bitNum]);
System.out.println("");
}
}
}
poj 1953 World Cup Noise (dp)的更多相关文章
- POJ 1953 World Cup Noise
World Cup Noise Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14397 Accepted: 7129 ...
- Poj 1953 World Cup Noise之解题报告
World Cup Noise Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16369 Accepted: 8095 ...
- poj - 1953 - World Cup Noise(dp)
题意:n位长的01序列(0 < n < 45),但不能出现连续的两个1,问序列有多少种. 题目链接:id=1953" target="_blank">h ...
- POJ 1953 World Cup Noise(递推)
https://vjudge.net/problem/POJ-1953 题意:输入一个n,这n位数只由0和1组成,并且不能两个1相邻.计算共有多少种排列方法. 思路:递推题. 首先a[1]=2,a[2 ...
- POJ-1953 World Cup Noise(线性动规)
World Cup Noise Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16374 Accepted: 8097 Desc ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- poj 3311(状态压缩DP)
poj 3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...
- poj 1185(状态压缩DP)
poj 1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...
- poj 3254(状态压缩DP)
poj 3254(状态压缩DP) 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相 ...
随机推荐
- Session技术入门代码案例
package com.loaderman.demo; import javax.servlet.ServletException; import javax.servlet.http.*; impo ...
- 阶段3 3.SpringMVC·_03.SpringMVC常用注解_5 RequestHeader注解
- 关于docker安装、docker镜像、docker容器等
1.Ubuntu安装docker sudo apt install docker.io 注意以下命令需在root下进行 sudo -s 2.查看docker当前容器 docker ps -a 3.启动 ...
- SQL Server 收集数据库死锁信息
背景 我们在数据库出现阻塞及时邮件预警提醒中监控了数据库的阻塞情况,为了更好的维护数据库,特别是提升终端客户用户体验,我们要尽量避免在数据库中出现死锁的情况.我们知道收集死锁可以开启跟踪标志如1204 ...
- SAS数据挖掘实战篇【一】
SAS数据挖掘实战篇[一] 1数据挖掘简介 1.1数据挖掘的产生 需求是一切技术之母,管理和计算机技术的发展,促使数据挖掘技术的诞生.随着世界信息技术的迅猛发展,信息量也呈几何指数增长,如何从巨量.复 ...
- Selenium下Chrome配置
地址:https://peter.sh/experiments/chromium-command-line-switches/ chrome_options.add_argument('--headl ...
- ASP.NET Core 入门笔记 1,项目概览
(1)新建项目选择ASP.NET Core Web应用程序 (2)程序会自动安装相应的包组件,此时依赖项会有感叹号,等待安装完毕感叹号消失 (3)在项目的文件夹下建立其他文件,都会在项目资源视图中显示 ...
- 【AMAD】salabim -- Python中进行离散事件模拟
简介 用法 个人评分 简介 salabim1是用来定义离散事件模拟(DES2),以及转换为动画的一个python库. 用法 请看官方文档3. 个人评分 实用性是基于对平均群众的,大多数人还是接触不到这 ...
- CentOS下Subversion(SVN)的快速安装与配置
如果你是一个软件开发者,你一定对Subversion不会感到陌生.Subversion是一个自由开源的版本控制系统.在Subversion管理下,文件和目录可以超越时空.Subversion将文件存放 ...
- 为什么样本标准差要除以n-1?
根据中心极限定理,我们可以用样本估计总体的平均值.那么,如果通过n个样本估计总体的标准差则需要除以n-1,这是为什么呢? 标准差是描述数据与平均值的偏离程度. 而因为样本的数据量比总体的数据量少,因此 ...