SAS PROC MCMC example in R: Logistic Regression Random-Effects Model(转)
In this post I will run SAS example Logistic Regression Random-Effects Model in four R based solutions; Jags, STAN, MCMCpack and LaplacesDemon. To quote the SAS manual: 'The data are taken from Crowder (1978). The Seeds data set is a 2 x 2 factorial layout, with two types of seeds, O. aegyptiaca 75 and O. aegyptiaca 73, and two root extracts, bean and cucumber. You observe r, which is the number of germinated seeds, and n, which is the total number of seeds. The independent variables are seed and extract.'
The point of this exercise is to demonstrate a random effect. Each observation has a random effect associated with it. In contrast the other parameters have non-informative priors. As such, the models are not complex.
Previous post in the series PROC MCMC examples programmed in R were: example 1: sampling, example 2: Box Cox transformation,example 5: Poisson regression and example 6: Non-Linear Poisson Regression.
JAGS
To make things easy on myself I wondered if this data was already present as R data. That is when I discovered this post at Grimwisdom doing exactly what I wanted as JAGS program. Hence that code was the basis for this JAGS code.
One thing on the models and distributions. JAGS uses tau (1/variance) as hyperparameter for the delta parameters and tau has gamma distribution. In contrast, all other programs use standard deviation as hyperparameter for delta parameter and hence gets the inverse gamma distribution. This distribution is available in the MCMCpack package and also in STAN. Gelman has a publication on this kind of priors:Prior distributions for variance parameters in hierarchical models.
library(R2jags)
data(orob2,package='aod')
seedData <- list ( N = 21,
r = orob2$y,
n = orob2$n,
x1 = c(1,0)[orob2$seed],
x2 = c(0,1)[orob2$root]
) modelRandomEffect <- function() {
for(i in 1:4) {alpha[i] ~ dnorm(0.0,1.0E-6)}
for(i in 1:N) {delta[i] ~ dnorm(0.0,tau)} for (i in 1:N) {
logit(p[i]) <- alpha[1] +
alpha[2]*x1[i] +
alpha[3]*x2[i] +
alpha[4]*x1[i]*x2[i] +
delta[i];
r[i] ~ dbin(p[i],n[i]);
}
tau ~ dgamma(.01,0.01)
s2 <- 1/tau
}
params <- c('alpha','s2')
myj <-jags(model=modelRandomEffect,
data = seedData,
parameters=params)
myj
Inference for Bugs model at "/tmp/RtmpKURJBm/model70173774d0c.txt", fit using jags,
3 chains, each with 2000 iterations (first 1000 discarded)
n.sims = 3000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha[1] -0.538 0.191 -0.907 -0.664 -0.542 -0.419 -0.135 1.005 440
alpha[2] 0.078 0.300 -0.550 -0.111 0.083 0.269 0.646 1.005 440
alpha[3] 1.342 0.284 0.768 1.164 1.340 1.524 1.895 1.004 1400
alpha[4] -0.807 0.441 -1.663 -1.098 -0.817 -0.521 0.046 1.009 300
s2 0.105 0.096 0.010 0.041 0.077 0.138 0.366 1.051 47
deviance 101.236 6.653 89.853 96.595 100.903 105.313 114.371 1.022 95
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC info (using the rule, pD = var(deviance)/2)
pD = 21.7 and DIC = 122.9
DIC is an estimate of expected predictive error (lower deviance is better).
MCMCpack
MCMCpack had some difficulty with this particular prior for s2. In the end I chose inverse Gamma(0.1,0.1) that worked. Therefor parameters estimates turn out slightly different. For conciseness only the first parameters are displayed in the output.
library(MCMCpack)
xmat <- cbind(rep(1,21),seedData$x1,seedData$x2,seedData$x1*seedData$x2)
MCMCfun <- function(parm) {
beta=parm[1:4]
s2=parm[5]
delta=parm[5+(1:21)]
if(s2<0 ) return(-Inf)
step1 <- xmat %*% beta + delta
p <- LaplacesDemon::invlogit(step1)
LL <- sum(dbinom(seedData$r,seedData$n,p,log=TRUE))
prior <- sum(dnorm(beta,0,1e3,log=TRUE))+
sum(dnorm(delta,0,sqrt(s2),log=TRUE))+
log(dinvgamma(s2,.1,.1))
LP=LL+prior
return(LP)
}
inits <- c(rnorm(4,0,1),runif(1,0,1),rnorm(21,0,1))
names(inits) <- c(paste('beta',0:3,sep=''),
's2',
paste('delta',1:21,sep=''))
mcmcout <- MCMCmetrop1R(MCMCfun,
inits)
summary(mcmcout)
Iterations = 501:20500
Thinning interval = 1
Number of chains = 1
Sample size per chain = 20000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
[1,] -0.59046 0.30456 0.0021535 0.03613
[2,] 0.01476 0.47526 0.0033606 0.04866
[3,] 1.48129 0.38227 0.0027031 0.03883
[4,] -0.93754 0.66414 0.0046962 0.07025
[5,] 0.35146 0.08004 0.0005659 0.05020
STAN
Stan had no problems at all with this model.
library(rstan)
smodel <- '
data {
int <lower=1> N;
int n[N];
int r[N];
real x1[N];
real x2[N];
}
parameters {
real Beta[4];
real <lower=0> s2;
real Delta[N];
}
transformed parameters {
vector[N] mu;
for (i in 1:N) {
mu[i] <- inv_logit(
Beta[1] + Beta[2]*x1[i] +
Beta[3]*x2[i]+Beta[4]*x1[i]*x2[i]+
Delta[i]);
}
}
model {
r ~ binomial(n,mu);
s2 ~ inv_gamma(.01,.01);
Delta ~ normal(0,sqrt(s2));
Beta ~ normal(0,1000);
}
'
fstan <- stan(model_code = smodel,
data = seedData,
pars=c('Beta','s2'))
fstan
Inference for Stan model: smodel.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
Beta[1] -0.56 0.01 0.20 -0.97 -0.68 -0.55 -0.43 -0.14 1370 1.00
Beta[2] 0.08 0.01 0.33 -0.58 -0.12 0.08 0.29 0.72 1385 1.00
Beta[3] 1.36 0.01 0.29 0.83 1.18 1.36 1.54 1.97 1355 1.00
Beta[4] -0.83 0.01 0.46 -1.76 -1.12 -0.82 -0.53 0.04 1434 1.00
s2 0.12 0.00 0.11 0.02 0.06 0.10 0.16 0.42 588 1.01
lp__ -523.70 0.34 6.86 -537.26 -528.19 -523.73 -519.21 -509.87 403 1.01
Samples were drawn using NUTS(diag_e) at Sat Jan 17 18:27:38 2015.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
LaplacesDemon
While in the MCMCpack code I borrowed from LaplacesDemon the invlogit() function, in LaplacesDemon I borrow the InvGamma distribution. I guess it evens out. For a change no further tweaking in the code. Note that the core likelihood function is the same as MCMCpack. However, LaplacesDemon is able to use the correct prior. For brevity again part of the output has not been copied in the blog.
library('LaplacesDemon')
mon.names <- "LP"
parm.names <- c(paste('beta',0:3,sep=''),
's2',
paste('delta',1:21,sep=''))
PGF <- function(Data) {
x <-c(rnorm(21+4+1,0,1))
x[5] <- runif(1,0,2)
x
}
MyData <- list(mon.names=mon.names,
parm.names=parm.names,
PGF=PGF,
xmat = xmat,
r=seedData$r,
n=seedData$n)
N<-1
Model <- function(parm, Data)
{
beta=parm[1:4]
s2=parm[5]
delta=parm[5+(1:21)]
# if(s2<0 ) return(-Inf)
step1 <- xmat %*% beta + delta
p <- invlogit(step1)
LL <- sum(dbinom(seedData$r,seedData$n,p,log=TRUE))
tau <- 1/s2
prior <- sum(dnorm(beta,0,1e3,log=TRUE))+
sum(dnorm(delta,0,sqrt(s2),log=TRUE))+
log(dinvgamma(s2,.01,.01))
LP=LL+prior
Modelout <- list(LP=LP, Dev=-2*LL, Monitor=LP,
yhat=p,
parm=parm)
return(Modelout)
}
Initial.Values <- GIV(Model, MyData, PGF=TRUE)
Fit1 <- LaplacesDemon(Model,
Data=MyData,
Initial.Values = Initial.Values
)
Fit1
Call:
LaplacesDemon(Model = Model, Data = MyData, Initial.Values = Initial.Values)
Acceptance Rate: 0.67594
Algorithm: Metropolis-within-Gibbs
Covariance Matrix: (NOT SHOWN HERE; diagonal shown instead)
beta0 beta1 beta2 beta3 s2 delta1 delta2 delta3
0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082
delta4 delta5 delta6 delta7 delta8 delta9 delta10 delta11
0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082
delta12 delta13 delta14 delta15 delta16 delta17 delta18 delta19
0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082 0.218082
delta20 delta21
0.218082 0.218082
Covariance (Diagonal) History: (NOT SHOWN HERE)
Deviance Information Criterion (DIC):
All Stationary
Dbar 100.063 100.063
pD 26.630 26.630
DIC 126.692 126.692
Initial Values:
[1] 1.385256609 -0.634946833 1.456635236 -0.041162276 1.883504417
[6] -1.380783003 -0.688367493 0.210060822 0.127231904 0.710367572
[11] -0.865780359 -1.649760777 -0.005532662 -0.114739142 0.642440639
[16] -0.919494616 -0.829018195 -0.938486769 0.302152995 -1.877933490
[21] 1.170542660 0.131282852 0.210852443 0.808779058 -2.115209547
[26] 0.431205368
Iterations: 10000
Log(Marginal Likelihood): -27.92817
Minutes of run-time: 0.81
Model: (NOT SHOWN HERE)
Monitor: (NOT SHOWN HERE)
Parameters (Number of): 26
Posterior1: (NOT SHOWN HERE)
Posterior2: (NOT SHOWN HERE)
Recommended Burn-In of Thinned Samples: 0
Recommended Burn-In of Un-thinned Samples: 0
Recommended Thinning: 240
Specs: (NOT SHOWN HERE)
Status is displayed every 100 iterations
Summary1: (SHOWN BELOW)
Summary2: (SHOWN BELOW)
Thinned Samples: 1000
Thinning: 10
Summary of All Samples
Mean SD MCSE ESS LB
beta0 -0.544001376 0.2305040 0.03535316 93.03421 -0.95266664
beta1 0.060270601 0.3458235 0.04387534 106.92244 -0.67629607
beta2 1.360903746 0.3086684 0.04838620 60.40225 0.76275725
beta3 -0.828532715 0.4864563 0.06323965 99.93646 -1.74744708
s2 0.134846805 0.1055559 0.01599649 68.64912 0.02549966
(...)
Summary of Stationary Samples
Mean SD MCSE ESS LB
beta0 -0.544001376 0.2305040 0.03535316 93.03421 -0.95266664
beta1 0.060270601 0.3458235 0.04387534 106.92244 -0.67629607
beta2 1.360903746 0.3086684 0.04838620 60.40225 0.76275725
beta3 -0.828532715 0.4864563 0.06323965 99.93646 -1.74744708
s2 0.134846805 0.1055559 0.01599649 68.64912 0.02549966
SAS PROC MCMC example in R: Logistic Regression Random-Effects Model(转)的更多相关文章
- SparkMLlib之 logistic regression源码分析
最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其 ...
- 统计学习方法笔记 Logistic regression
logistic distribution 设X是连续随机变量,X服从逻辑斯谛分布是指X具有下列分布函数和密度函数: 式中,μ为位置参数,γ>0为形状参数. 密度函数是脉冲函数 分布函数是一条S ...
- Logistic Regression and Gradient Descent
Logistic Regression and Gradient Descent Logistic regression is an excellent tool to know for classi ...
- (四)Logistic Regression
1 线性回归 回归就是对已知公式的未知参数进行估计.线性回归就是对于多维空间中的样本点,用特征的线性组合去拟合空间中点的分布和轨迹,比如已知公式是y=a∗x+b,未知参数是a和b,利用多真实的(x,y ...
- 转载 Deep learning:四(logistic regression练习)
前言: 本节来练习下logistic regression相关内容,参考的资料为网页:http://openclassroom.stanford.edu/MainFolder/DocumentPage ...
- More 3D Graphics (rgl) for Classification with Local Logistic Regression and Kernel Density Estimates (from The Elements of Statistical Learning)(转)
This post builds on a previous post, but can be read and understood independently. As part of my cou ...
- Some 3D Graphics (rgl) for Classification with Splines and Logistic Regression (from The Elements of Statistical Learning)(转)
This semester I'm teaching from Hastie, Tibshirani, and Friedman's book, The Elements of Statistical ...
- R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https:// ...
- Logistic Regression 算法向量化实现及心得
Author: 相忠良(Zhong-Liang Xiang) Email: ugoood@163.com Date: Sep. 23st, 2017 根据 Andrew Ng 老师的深度学习课程课后作 ...
随机推荐
- 文件系统与linux相关知识点
文件系统是操作系统中管理持久性数据的子系统,提供数据存储和访问功能.对于服务器开发人员,比较关注的是unix(linux)环境下的文件系统,比如分区与磁盘关系,磁盘的剩余空间,文件的类型与权限控制,文 ...
- swust oj(0088)表达式的转换
表达式的转换(0088) Time limit(ms): 5000 Memory limit(kb): 65535 Submission: 435 Accepted: 93 Accepted 16级卓 ...
- 【one day one linux】grep工具
grep 筛选功能 学习这些命令采用20/80原则,这样,可以达到使用%20的命令选项,处理80%的情况. #grep 的使用格式 grep [option] pattern file 那么接下来看 ...
- linux(ubuntu)获取命令源码方式
以下载ls的源码为例说明: 首先要知道ls是属于哪个包的,可以通过下面命令: #dpkg -S 'command name' 通用格式 $ dpkg -S /bin/ls 得到如下结果: coreut ...
- 解决Json传输中文乱码问题
1.如果是通过URL传递:----需要编码两次 var searchText = this.searchText(); searchText = encodeURI(searchText); sear ...
- 计算单词出现的次数--linq
1.直接给出代码:声明数据,也可以是txt等文件,通过File类的静态方法读取其中的文本,再转换成List<string>数组. private static List<string ...
- React的学习(下)
摘要 众所周知,前端三大框架Angular.React.Vue,所以为了跟上时代的步伐,最近开始着手学习React,这时候就发现个大问题,框架一直在更新,提倡的编写语法也在更新,网上有许多教程都是一两 ...
- PTA自测-3 数组元素循环右移问题
自测-3 数组元素循环右移问题 一个数组A中存有N(N>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(M≥0)个位置,即将A中的数据由(A0A1···AN-1)变换为 ...
- swoole使用 常用案例
swoole使用 服务器及客户端 4种服务器[tcp/udp/web/websocket] TCP服务器 //创建Server对象,监听 127.0.0.1:9501端口 $serv = new sw ...
- 关于li标签之间的间隔如何消除!
问题:li标签用了display:inline之后虽然成功的合并在一行,但是li标签之间出现了间距. 原因:按enter键换行之后li标签之间存在着空格,正是这些空格占据了li标签之间的空间. 解决方 ...