Description

一个有N个元素的集合有2^N 个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得

它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】

假设原集合为{A,B,C}

则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】

​ 对于100%的数据,1≤N≤1000000;0≤K≤N;

题解

bzoj题目链接(权限题)

前置知识:广义容斥原理

考虑对于每个方案作为一个元素,每一位相同作为一个性质。

考虑在\(n\)个里选\(x\)个,要满足这\(x\)个性质,即集合中有\(x\)个相同,剩下\(n-x\)个集合里的元素可选可不选,但是不能都不选,要减去空集的一个,注意这里的集合指的是题目中的集合,

所以可得:

\[\alpha (x) = \binom{n}{x} (2^{2^{n-x}}-1)
\]

然后设\(\beta (x)\)为恰好有x个性质的元素个数,可得:

\[\beta(x) = \sum _{i=x} ^{n} (-1)^{i-x}\binom{i}{x} \alpha(i)
\]

答案为\(\beta (k)\)。

#include<bits/stdc++.h>
using namespace std; #define int long long void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) x=-x,putchar('-');
if(!x) return ;print(x/10),putchar(x%10+'0');
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define maxn 1000050
#define mod 1000000007 int n,fac[maxn],ifac[maxn],f[maxn],k; int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=a*a%mod) if(x&1) res=res*a%mod;
return res;
} signed main() {
read(n),read(k);f[0]=2,fac[0]=ifac[0]=1;
for(int i=1;i<=n;i++) f[i]=f[i-1]*f[i-1]%mod,fac[i]=fac[i-1]*i%mod;
ifac[n]=qpow(fac[n],mod-2);
for(int i=n-1;i>=0;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
int ans=0;
for(int op=-1,i=k;i<=n;i++) {
op=-op;
ans=(ans+op*fac[n]*ifac[i]%mod*ifac[n-i]%mod*(f[n-i]-1)%mod*fac[i]%mod*ifac[k]%mod*ifac[i-k]%mod)%mod;
}
write((ans%mod+mod)%mod);
return 0;
}

[bzoj2893] 集合计数的更多相关文章

  1. 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 229  Solved: 120[Submit][Status][Discuss] ...

  2. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  3. bzoj2839: 集合计数 容斥+组合

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 523  Solved: 287[Submit][Status][Discuss] ...

  4. bzoj2839 集合计数(容斥)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 490[Submit][Status][Discuss] ...

  5. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  6. bzoj2839 集合计数

    F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  Logout 捐赠本站 2839: 集合计数 Time ...

  7. 【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了

    再谈容斥原理来两道套路几乎一致的题目[BZOJ2839]集合计数Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交 ...

  8. 【BZOJ2839】集合计数(容斥,动态规划)

    [BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...

  9. 【BZOJ 2839】 2839: 集合计数 (容斥原理)

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 399  Solved: 217 Description 一个有N个元素的集合有2 ...

随机推荐

  1. XPath知识点简单总结(思维导图)

    XPath是一种用于在XML文档中查找信息的语言,其对HTML也有很好的支持,所以在网络爬虫中可用于解析HTML文档.参考链接. 下图是XPath知识点的简单总结成思维导图:

  2. python 摘要算法

    一.概述: 摘要算法主要特征是加密过程不需要密钥,并且加密的数据无法解密,只有输入相同的明文数据经过相同的摘要算法才能得到相同的密文.摘要算法主要应用在“数字签名”领域.接下来会讲述RSA公司的MD5 ...

  3. 一张表搞清楚 php 的 is_null、empty、isset的区别

    isset 判断变量是否已存在 empty 判断变量是否为空或为0 is_null 判断变量是否为NULL 变量 empty is_null isset $a=”” true false true $ ...

  4. Python学习第二弹

    昨天补充: 编码: Unicode ; utf-8 ; GBK       关系:   关键字:1. continue 终止当前循环,进行下一次循环 2. break      终止循环 题6解法2: ...

  5. Python协程中使用上下文

    在Python 3.7中,asyncio 协程加入了对上下文的支持.使用上下文就可以在一些场景下隐式地传递变量,比如数据库连接session等,而不需要在所有方法调用显示地传递这些变量.使用得当的话, ...

  6. re模块(详解正则)

    re模块 imort re 1.\w \W print(re.findall('\w','ab 12\+- _*&')) #\w 匹配字母 数字 及下划线 执行结果:['a', 'b', '1 ...

  7. 第四模块:网络编程进阶&数据库开发 考核实战

     1.什么是进程?什么是线程? 什么是协程? 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 线程:在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 协程是一种用 ...

  8. linux基础重要命令小节

    此为L005&&L006课程内容的一个总结. 命令: 基本形式 命令 [参数] [路径或文件] 例:ls -ld /data pwd 目前所在目录 [root@moban /]# pw ...

  9. 【廖雪峰老师python教程】——map/reduce

    Map[单个操作对不同单一对象重复进行] map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 返回结果注 ...

  10. python 网络篇(网络编程)

    一.楔子 你现在已经学会了写python代码,假如你写了两个python文件a.py和b.py,分别去运行,你就会发现,这两个python的文件分别运行的很好.但是如果这两个程序之间想要传递一个数据, ...