[bzoj2893] 集合计数
Description
一个有N个元素的集合有2^N 个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得
它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)
Input
一行两个整数N,K
Output
一行为答案。
Sample Input
3 2
Sample Output
6
HINT
【样例说明】
假设原集合为{A,B,C}
则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}
【数据说明】
对于100%的数据,1≤N≤1000000;0≤K≤N;
题解
bzoj题目链接(权限题)
前置知识:广义容斥原理
考虑对于每个方案作为一个元素,每一位相同作为一个性质。
考虑在\(n\)个里选\(x\)个,要满足这\(x\)个性质,即集合中有\(x\)个相同,剩下\(n-x\)个集合里的元素可选可不选,但是不能都不选,要减去空集的一个,注意这里的集合指的是题目中的集合,
所以可得:
\]
然后设\(\beta (x)\)为恰好有x个性质的元素个数,可得:
\]
答案为\(\beta (k)\)。
#include<bits/stdc++.h>
using namespace std;
#define int long long
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) x=-x,putchar('-');
if(!x) return ;print(x/10),putchar(x%10+'0');
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
#define maxn 1000050
#define mod 1000000007
int n,fac[maxn],ifac[maxn],f[maxn],k;
int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=a*a%mod) if(x&1) res=res*a%mod;
return res;
}
signed main() {
read(n),read(k);f[0]=2,fac[0]=ifac[0]=1;
for(int i=1;i<=n;i++) f[i]=f[i-1]*f[i-1]%mod,fac[i]=fac[i-1]*i%mod;
ifac[n]=qpow(fac[n],mod-2);
for(int i=n-1;i>=0;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
int ans=0;
for(int op=-1,i=k;i<=n;i++) {
op=-op;
ans=(ans+op*fac[n]*ifac[i]%mod*ifac[n-i]%mod*(f[n-i]-1)%mod*fac[i]%mod*ifac[k]%mod*ifac[i-k]%mod)%mod;
}
write((ans%mod+mod)%mod);
return 0;
}
[bzoj2893] 集合计数的更多相关文章
- 【BZOJ-2839】集合计数 容斥原理 + 线性推逆元 + 排列组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 229 Solved: 120[Submit][Status][Discuss] ...
- BZOJ 2839: 集合计数 [容斥原理 组合]
2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- bzoj2839 集合计数(容斥)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 883 Solved: 490[Submit][Status][Discuss] ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- bzoj2839 集合计数
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser Logout 捐赠本站 2839: 集合计数 Time ...
- 【BZOJ2839】集合计数&&【BZOJ3622】已经没有什么好害怕的了
再谈容斥原理来两道套路几乎一致的题目[BZOJ2839]集合计数Description一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交 ...
- 【BZOJ2839】集合计数(容斥,动态规划)
[BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...
- 【BZOJ 2839】 2839: 集合计数 (容斥原理)
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 399 Solved: 217 Description 一个有N个元素的集合有2 ...
随机推荐
- Sencha Themer
Sencha Themer 1:介绍 在Ext JS中创建自定义主题一直是一项挑战.但是使用Sencha Themer,我们已经删除了所有的猜测工作,并添加了一个简单的图形界面来定制应用程序的任何方面 ...
- 系统编程.py(多进程与多线程干货)
1.并发与并行* 多个任务轮换在CPU上跑叫并发* 多个任务在多个CPU上跑,没有交替执行的* 状态叫并行.通常情况下都是并发,即使是多核.* 而控制进程先执行谁后执行谁通过操作系统的调度算法.目前已 ...
- C# WebClient类上传和下载文件
这篇文章主要介绍了C# WebClient类用法实例,本文讲解使用WebClient下载文件.OpenWriter打开一个流使用指定的方法将数据写入到uri以及上传文件示例,需要的朋友可以参考下 ...
- 在amazon linux上安装Jenkins
原文请参考: https://medium.com/@itsmattburgess/installing-jenkins-on-amazon-linux-16aaa02c369c
- 学习RUNOOB.COM进度二
MongoDB 概念解析 SQL术语/概念 MongoDB术语/概念 解释/说明 database database 数据库 table collection 数据库表/集合 row document ...
- Go语言获取本地IP地址
最近要做一个向局域网内的所有设备广播发送信息,并接受设备的回复信息,回复信息包括设备的版本号,IP地址,运行工程名等信息.发现一个局域网内是可以有不同的网段的,但UDP广播只能是同一个网段的广播.又发 ...
- git之解决冲突
前面几次使用git,一直对于冲突的这个问题不是很理解,感觉有些时候就会产生冲突,在此记录一下解决冲突的流程 1.git bash上面冲突显示 2.在idea上面可以看到冲突的文件 3.去解决冲突 4. ...
- 用mapreduce读取hdfs数据到hbase上
hdfs数据到hbase过程 将HDFS上的文件中的数据导入到hbase中 实现上面的需求也有两种办法,一种是自定义mr,一种是使用hbase提供好的import工具 hbase先创建好表 cre ...
- 【数据库】 SQL 使用注意点
[数据库] SQL 使用注意点 一. 索引 1. 常用的搜索条件,都建议加上索引,但状态列除外(该列只有0,1或几个值,不需要加索引,因为没效果) 2. 查询时, 索引列不能做函数处理,会不走索引 3 ...
- python简单的数据清洗,数据筛选方法归类
创建数组有两种方式,1.直接赋值 2.随机变量生成随机生成包括4种:np.arange(20),np.linspace(0,10,5),np.logspace(0,2,5),np.random.ran ...