[算法模板]FFT-快速傅里叶变换

感谢ZYW聚聚为我们讲解FFT~

FFT

思路

我懒,思路和证明部分直接贴链接:

rvalue

LSJ-FFT与NTT基础

代码

主要思想是利用了单位根特殊的性质(n次单位根后一半幂跟前一半幂取值相等)。只是因为式子中奇数次幂还要提出来个\(\omega_n^k\),这个东西只要取个反就好了(即对称性:\(\omega_n^k=-\omega_n^{k+\frac{n}{2}}\))。

FFT递归:

#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=2e6+10;
const double pi=acos(-1.0);
struct comp{
double a,b;
};
comp operator +(comp a,comp b){return (comp){a.a+b.a,a.b+b.b};}
comp operator -(comp a,comp b){return (comp){a.a-b.a,a.b-b.b};}
comp operator *(comp a,comp b){return (comp){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
void fft(int l,comp *a,int f)
{
if(l==1) return;
comp a1[l>>1],a2[l>>1];
for(int i=0;i<l;i+=2)
{
a1[i>>1]=a[i];
a2[i>>1]=a[i+1];
}
fft(l>>1,a1,f); fft(l>>1,a2,f);
comp wn=(comp){cos(2*pi/l),f*sin(2*pi/l)},w=(comp){1,0};
for(int i=0;i<(l>>1);i++,w=w*wn)
{
a[i]=a1[i]+w*a2[i];
a[i+(l>>1)]=a1[i]-w*a2[i];
}
}
comp a[maxn],b[maxn];
int main ()
{
int n,m; scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].a);
int l=1; while(l<=n+m) l<<=1;
fft(l,a,1); fft(l,b,1);
for(int i=0;i<l;i++) a[i]=a[i]*b[i];
fft(l,a,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].a/l+0.5));
return 0;
}

因为其运行效率过低。我们一般使用迭代FFT。

FFT迭代:

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
const int maxn=4*1e6+10;
const double pi=acos(-1.0);
struct comp{
double a,b;
};
comp operator +(comp a,comp b){return (comp){a.a+b.a,a.b+b.b};}
comp operator -(comp a,comp b){return (comp){a.a-b.a,a.b-b.b};}
comp operator *(comp a,comp b){return (comp){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
int rev[maxn],rp;
void get_rev(int l)//l为位数,rev[i]代表i的二进制表示颠倒(二进制位有l位,不足补0)
{
for(int i=1;i<(1<<l);i++)
rev[i]=(rev[i>>1]>>1)|((1&i)<<l-1);
}
void fft(int len,comp *a,int f)
{
for(int i=1;i<len;i++)
if(rev[i]>i) swap(a[rev[i]],a[i]);
for(int l=2;l<=len;l<<=1)//区间长度
{
comp wn=(comp){cos(2*pi/l),f*sin(2*pi/l)};
for(int i=0;i+l<=len;i+=l)
{
comp w=(comp){1,0};
for(int k=i;k<i+(l>>1);k++,w=w*wn)
{
comp t=w*a[k+(l>>1)],tmp=a[k];
a[k]=tmp+t;
a[k+(l>>1)]=tmp-t;
}
}
}
}
//a[i]表示当x=单位根的i次方时y的值
comp a[maxn],b[maxn];
int main ()
{
int n,m; scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].a);
int l=1,cnt=0; while(l<=n+m) l<<=1,cnt++;
get_rev(cnt);
fft(l,a,1); fft(l,b,1);//l是多项式项数
for(int i=0;i<l;i++) a[i]=a[i]*b[i];
fft(l,a,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].a/l+0.5));
return 0;
}

NTT

啊我饿了我要吃NTT

直接粘一张钟神的PPT:

代码

预处理原根次幂:

for(int i=2;i<(1<<l);i<<=1) {//枚举单位根周期长度(即w_n的n)
int w0=Pow(3,(P-1)/i),w1=Pow(3,P-1-(P-1)/i);
wn[0][i>>1]=wn[1][i>>1]=1;//wn[f][i],i的最高位代表是几次单位根,其他位代表是第几个。这里求的是i的单位根,因为前一半i单位根等于i/2的单位根所以是存储在i/2的位置.(推式子的时候推过,长度为len时代入单位根周期为len/2)
for(int j=1;j<(i>>1);++j)//w_i单位根的j次方(因为折半了所以只用求一半)
wn[0][(i>>1)+j]=wn[0][(i>>1)+j-1]*(ll)w0%P,
wn[1][(i>>1)+j]=wn[1][(i>>1)+j-1]*(ll)w1%P;
}

[模板]分治FFT

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int mod=998244353;
const int maxn=3e5+10;
typedef long long ll;
ll a[maxn],b[maxn],f[maxn],g[maxn],wn[2][maxn];
int n,rev[maxn];
int ksm(int num,int t){
int res=1;
for(;t;t>>=1,num=1ll*num*num%mod){
if(t&1)res=1ll*res*num%mod;
}
return res;
}
void get_rev(int len){for(int i=1;i<(1<<len);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));}
void get_wn(int len){
for(int i=2;i<=(1<<len);i<<=1){
ll w1=ksm(3,(mod-1)/i),w0=ksm(3,mod-1-(mod-1)/i);
wn[0][i>>1]=wn[1][i>>1]=1;
for(int j=1;j<(i>>1);j++){
wn[0][j+(i>>1)]=wn[0][j+(i>>1)-1]*w0%mod;
wn[1][j+(i>>1)]=wn[1][j+(i>>1)-1]*w1%mod;
}
}
}
void NTT(int len,ll *c,int f){
for(int i=0;i<len;i++)if(rev[i]>i)swap(c[i],c[rev[i]]);
for(int l=2;l<=len;l<<=1){
for(int i=0;i+l<=len;i+=l){
for(int k=i;k<i+(l>>1);k++){
ll tmp1=c[k],tmp2=wn[f][k+(l>>1)-i]*c[k+(l>>1)];
c[k]=(tmp1+tmp2)%mod;
c[k+(l>>1)]=(tmp1-tmp2+mod)%mod;
}
}
}
}
void cdq(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
cdq(l,mid);
int cnt=0,len=1;while(len<=(r-l-1))len<<=1,cnt++;
for(int i=0;i<len;i++)a[i]=b[i]=0;
for(int i=0;i<=mid-l;i++)a[i]=f[i+l];
for(int i=0;i<=r-l-1;i++)b[i]=g[i+1];
// memset(rev,0,sizeof(rev));
get_rev(cnt);
NTT(len,a,1);NTT(len,b,1);
for(int i=0;i<len;i++)a[i]=a[i]*b[i]%mod;
NTT(len,a,0);
ll inv=ksm(len,mod-2);
for(int i=0;i<len;i++)a[i]=a[i]*inv%mod;
for(int i=mid+1;i<=r;i++)f[i]+=a[i-l-1],f[i]%=mod;
cdq(mid+1,r);
}
int main(){
f[0]=1;
scanf("%d",&n);get_wn(18);
for(int i=1;i<n;i++)scanf("%lld",&g[i]);
cdq(0,n-1);
for(int i=0;i<n;i++)printf("%lld ",(f[i]%mod+mod)%mod);
return 0;
}

[算法模板]FFT-快速傅里叶变换的更多相关文章

  1. 模板 FFT 快速傅里叶变换

    FFT模板,原理不难,优质讲解很多,但证明很难看太不懂 这模板题在bzoj竟然是土豪题,服了 #include <cmath> #include <cstdio> #inclu ...

  2. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  3. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  4. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  5. FFT快速傅里叶变换算法

    1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...

  6. 「算法笔记」快速傅里叶变换(FFT)

    一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个 ...

  7. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

  8. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  9. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

随机推荐

  1. 业级PPTP服务器搭建企

    搭建企业级PPTP服务器   分类: Linux服务篇 undefined 本文收录在企业项目实战系列 一.VPN 介绍 1.介绍 虚拟私人网络(英语:Virtual Private Network, ...

  2. 输出错误long类型

    Microsoft Visual C++ 输出不了long 类型的数字怎么办? 在C/C++中,64为整型一直是一种没有确定规范的数据类型.现今主流的编译器中,对64为整型的支持也是标准不一,形态各异 ...

  3. android studio 刚安装需要配置的东西

    智能提示 调整log区域的字体 快捷键中文乱码 自动导入包 意思是创建成员变量的时候,以m开头 下载插件 提高编译的速度

  4. NodeJS4-2静态资源服务器实战_实现获取文件路径

    实例2 : 实现获取文件路径,判断是文件还是文件夹,如果是文件夹就显示里面的列表文件,如果是文件就显示里面的内容 defaultConfig.js module.exports={ root:proc ...

  5. C#中使用Path、Directory、Split、Substring实现对文件路径和文件名的常用操作实例

    场景 现在有一个文件路径 E:\\BTSData\\2019-11\\admin_20180918_1_1_2 需要获取最后的文件名admin_20180918_1_1_2 需要获取文件的上层目录20 ...

  6. CSS入门(背景各种属性的详解、垂直居中和过渡效果的详解、渐变效果的简单讲解、雪碧图和精灵图)

    一.各种背景属性 1.background-image 属性为元素设置背景图像. 元素的背景占据了元素的全部尺寸,包括内边距和边框,但不包括外边距. 默认地,背景图像位于元素的左上角,并在水平和垂直方 ...

  7. 升级sharepoint2013遇到的坑

    现在要将sharepoint2010,ProjectServer2010升级到2016的版本,需要先升级到2013的版本. 按照官方文档,瞎搞将sharepoint2010升级到2013的版本,中间出 ...

  8. java月考题JSD1908第二次月考(含答案和解析)

    考试 .container { clear: both; margin: 0 auto; text-align: left; /*width: 1200px;*/ } .container:after ...

  9. java正则表达式大全(常用)

    一.校验数字的表达式 数字:^[-]*$ n位的数字:^\d{n}$ 至少n位的数字:^\d{n,}$ m-n位的数字:^\d{m,n}$ 零和非零开头的数字:^(|[-][-]*)$ 非零开头的最多 ...

  10. React搭建项目(全家桶)

    安装React脚手架: npm install -g create-react-app 创建项目: create-react-app app app:为该项目名称 或者跳过以上两步直接使用: npx ...