题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11358

【思路】

二分法+半平面交

二分与海边的的距离,由法向量可以得到平移后的各边,半平面交在特定精度判断是否有交集。

【代码】

 #include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const double eps = 1e-; struct Pt {
double x,y;
Pt(double x=,double y=):x(x),y(y) {}
};
typedef Pt vec;
struct Line {
Pt P; vec v;
double ang;
Line () {};
Line (Pt P,vec v):P(P),v(v) { ang=atan2(v.y , v.x); }
bool operator < (const Line& rhs) const{
return ang<rhs.ang;
}
}; vec operator - (Pt A,Pt B) { return vec(A.x-B.x,A.y-B.y); }
vec operator + (vec A,vec B) { return vec(A.x+B.x,A.y+B.y); }
vec operator * (vec A,double p) { return vec(A.x*p,A.y*p); }
double Dot(vec A,vec B) { return A.x*B.x+A.y*B.y; }
double cross(Pt A,Pt B) { return A.x*B.y-A.y*B.x; }
double Len(vec A) { return sqrt(Dot(A,A)); }
vec Normal(vec A) { double L=Len(A); return vec(-A.y/L,A.x/L); } bool onleft(Line L,Pt P) { return cross(L.v,P-L.P)>; } Pt LineIntersection(Line a,Line b) {
vec u=a.P-b.P;
double t=cross(b.v,u)/cross(a.v,b.v);
return a.P+a.v*t;
}
int HalfplaneIntersection(Line* L,int n,Pt* poly) {
sort(L,L+n);
int first,last;
Pt *p=new Pt[n];
Line *q=new Line[n];
q[first=last=]=L[];
for(int i=;i<n;i++) {
while(first<last && !onleft(L[i],p[last-])) last--;
while(first<last && !onleft(L[i],p[first])) first++;
q[++last]=L[i];
if(fabs(cross(q[last].v,q[last-].v))<eps) {
last--;
if(onleft(q[last],L[i].P)) q[last]=L[i];
}
if(first<last) p[last-]=LineIntersection(q[last-],q[last]);
}
while(first<last && !onleft(q[first],p[last-])) last--;
if(last-first<=) return ;
p[last]=LineIntersection(q[last],q[first]);
int m=;
for(int i=first;i<=last;i++) poly[m++]=p[i];
return m;
} const int N = +;
Pt p[N],poly[N];
Line L[N];
vec v[N] , v2[N];
int n; int main() {
while(scanf("%d",&n)== && n) {
int m,x,y;
for(int i=;i<n;i++) {
scanf("%d%d",&x,&y);
p[i]=Pt(x,y);
}
for(int i=;i<n;i++) {
v[i]=p[(i+)%n]-p[i];
v2[i]=Normal(v[i]);
}
double left= , right=;
while(right-left>eps) {
double mid=left+(right-left)/;
for(int i=;i<n;i++) L[i]=Line(p[i]+v2[i]*mid,v[i]);
m=HalfplaneIntersection(L,n,poly);
if(!m) right=mid; else left=mid;
}
printf("%.6lf\n",left);
}
return ;
}

UVA 3890 Most Distant Point from the Sea(二分法+半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  2. poj3525Most Distant Point from the Sea(半平面交)

    链接 求凸多边形内一点距离边最远. 做法:二分+半平面交判定. 二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核. 本想自己写一个向内推进..仔细一看发现自己的平面交模板上自带.. #in ...

  3. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  4. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  5. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  6. 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea

    题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...

  7. uvalive 3890 Most Distant Point from the Sea

    题意:求一个凸多边形中一点到边的最大距离. 思路:转换成在多边形内部,到每边距离为d的直线所围成的内多边形是否存在.也就是,二分距离+半平面交. #include<cstdio> #inc ...

  8. uva 1396 - Most Distant Point from the Sea

    半平面的交,二分的方法: #include<cstdio> #include<algorithm> #include<cmath> #define eps 1e-6 ...

  9. UVALive 3890 Most Distant Point from the Sea(凸包最大内接园)

    一个n个点的凸多边形,求多边形中离多边形边界最远的距离.实际上就是求凸包最大内接圆的半径. 利用半平面交求解,每次二分枚举半径d,然后将凸包每条边所代表的半平面沿其垂直单位法向量平移d,看所有平移后的 ...

随机推荐

  1. Hdu 4514 湫湫系列故事——设计风景线

    湫湫系列故事--设计风景线 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total ...

  2. Inline functions

    Problems: (Page 372) There are two problems with the use of proprocessor macros in C++. The first is ...

  3. Scala - error: not found: value SortedMap

    先 IMPORT!!!! scala> import scala.collection._import scala.collection._ scala>  SortedMap(" ...

  4. Jquery环境搭建前言

  5. 基于jQuery的图片左右轮播,基本原理通用

    毕竟新人,写点基础的小东西,希望能和大家沟通交流,提高自己的水平. 这个是应用较多的轮播部分,希望能和大家分享一下思路,拓宽视野. 话不多说,上内容. 我的思路很简单就是通过判断index值的大小变化 ...

  6. Android App资源的查找过程分析

    Android资源管理框架实际就是由AssetManager和Resources两个类来实现的.其中,Resources类可以根据ID来查找资源,而AssetManager类根据文件名来查找资源.事实 ...

  7. Toy Storage

    Toy Storage 题型与2318 TOYS一样,注意要对线段排序,现在模板又更新了~~ #include<iostream> #include<cstdio> #incl ...

  8. POJ 2886 Who Gets the Most Candies? 线段树

    题目: http://poj.org/problem?id=2886 左右转的果断晕,题目不难,关键是准确的转啊转.因为题目要求输出约数个数最多的数,所以预处理[1,500000]的约数的个数就行了. ...

  9. Java入门-浅析Java学习从入门到精通【转】

    一. JDK (Java Development Kit)  JDK是整个Java的核心,包括了Java运行环境(Java Runtime Envirnment),一堆Java工具和Java基础的类库 ...

  10. 第 3 章 单例模式【Singleton Pattern】

    以下内容出自:24种设计模式介绍与6大设计原则 这个模式是很有意思,而且比较简单,但是我还是要说因为它使用的是如此的广泛,如此的有人缘,单例就是单一.独苗的意思,那什么是独一份呢?你的思维是独一份,除 ...