不多说,直接上代码。

  统计出每个年龄段的 男、女 学生的最高分

  这里,为了空格符的差错,直接,我们有时候,像如下这样的来排数据。

代码

package zhouls.bigdata.myMapReduce.Gender;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
*
* @function 统计不同年龄段内 男、女最高分数
*
*
*/ /*
Alice<tab>23<tab>female<tab>45
Bob<tab>34<tab>male<tab>89
Chris<tab>67<tab>male<tab>97
Kristine<tab>38<tab>female<tab>53
Connor<tab>25<tab>male<tab>27
Daniel<tab>78<tab>male<tab>95
James<tab>34<tab>male<tab>79
Alex<tab>52<tab>male<tab>69
Nancy<tab>7<tab>female<tab>98
Adam<tab>9<tab>male<tab>37
Jacob<tab>7<tab>male<tab>23
Mary<tab>6<tab>female<tab>93
Clara<tab>87<tab>female<tab>72
Monica<tab>56<tab>female<tab>92
*/
public class Gender extends Configured implements Tool {
/*
*
* @function Mapper 解析输入数据,然后按需求输出
* @input key=行偏移量 value=学生数据
* @output key=gender value=name+age+score
*
*/
public static class PCMapper extends Mapper<Object, Text, Text, Text>
{
public void map(Object key, Text value, Context context) throws IOException, InterruptedException
{//拿Alice<tab>23<tab>female<tab>45
String[] tokens = value.toString().split("<tab>");//使用分隔符<tab>,将数据解析为数组 tokens
//得到Alice 23 female 45
//即tokens[0] tokens[1] tokens[2] tokens[3]
String gender = tokens[].toString();//性别
String nameAgeScore = tokens[] + "\t" + tokens[] + "\t"+ tokens[];
//输出 key=gender value=name+age+score
//输出 key=female value=Alice +23+45
context.write(new Text(gender), new Text(nameAgeScore));//将 (female , Alice+ 23+ 45) 写入到context中
}
}
public static class MyHashPartitioner extends Partitioner<Text, Text>
{
/** Use {@link Object#hashCode()} to partition. */
@Override
public int getPartition(Text key, Text value,int numReduceTasks)
{
return (key.hashCode()) % numReduceTasks;
} }
/**
*
* @function Partitioner 根据 age 选择 reduce 分区
*
*/
public static class PCPartitioner extends Partitioner<Text, Text>
{ @Override
public int getPartition(Text key, Text value, int numReduceTasks)
{
// TODO Auto-generated method stub
String[] nameAgeScore = value.toString().split("\t");
String age = nameAgeScore[];//学生年龄
int ageInt = Integer.parseInt(age);//按年龄段分区 // 默认指定分区 0
if (numReduceTasks == )
return ; //年龄小于等于20,指定分区0
if (ageInt <= ) {
return ;
}
// 年龄大于20,小于等于50,指定分区1
if (ageInt > && ageInt <= ) { return % numReduceTasks;
}
// 剩余年龄,指定分区2
else
return % numReduceTasks;
}
} /**
*
* @function 定义Combiner 合并 Mapper 输出结果
*
*/
public static class PCCombiner extends Reducer<Text, Text, Text, Text>
{
private Text text = new Text(); public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
{
int maxScore = Integer.MIN_VALUE;
String name = " ";
String age = " ";
int score = ;
for (Text val : values)
{
String[] valTokens = val.toString().split("\\t");
score = Integer.parseInt(valTokens[]);
if (score > maxScore)
{
name = valTokens[];
age = valTokens[];
maxScore = score;
}
}
text.set(name + "\t" + age + "\t" + maxScore);
context.write(key, text);
}
} /*
*
* @function Reducer 统计出 不同年龄段、不同性别 的最高分
* input key=gender value=name+age+score
* output key=name value=age+gender+score
*
*/
static class PCReducer extends Reducer<Text, Text, Text, Text>
{
@Override
public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
{
int maxScore = Integer.MIN_VALUE;
String name = " ";
String age = " ";
String gender = " ";
int score = ;
// 根据key,迭代 values 集合,求出最高分
for (Text val : values)
{
String[] valTokens = val.toString().split("\\t");
score = Integer.parseInt(valTokens[]);
if (score > maxScore)
{
name = valTokens[];
age = valTokens[];
gender = key.toString();
maxScore = score;
}
}
context.write(new Text(name), new Text("age- " + age + "\t" + gender + "\tscore-" + maxScore));
}
} /**
* @function 任务驱动方法
* @param args
* @return
* @throws Exception
*/
@Override
public int run(String[] args) throws Exception
{
// TODO Auto-generated method stub
Configuration conf = new Configuration();//读取配置文件 Path mypath = new Path(args[]);
FileSystem hdfs = mypath.getFileSystem(conf);
if (hdfs.isDirectory(mypath))
{
hdfs.delete(mypath, true);
} @SuppressWarnings("deprecation")
Job job = new Job(conf, "gender");//新建一个任务
job.setJarByClass(Gender.class);//主类
job.setMapperClass(PCMapper.class);//Mapper
job.setReducerClass(PCReducer.class);//Reducer job.setPartitionerClass(MyHashPartitioner.class);
//job.setPartitionerClass(PCPartitioner.class);//设置Partitioner类
job.setNumReduceTasks();// reduce个数设置为3 job.setMapOutputKeyClass(Text.class);//map 输出key类型
job.setMapOutputValueClass(Text.class);//map 输出value类型 job.setCombinerClass(PCCombiner.class);//设置Combiner类 job.setOutputKeyClass(Text.class);//输出结果 key类型
job.setOutputValueClass(Text.class);//输出结果 value 类型 FileInputFormat.addInputPath(job, new Path(args[]));// 输入路径
FileOutputFormat.setOutputPath(job, new Path(args[]));// 输出路径
job.waitForCompletion(true);//提交任务
return ;
}
/**
* @function main 方法
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception
{
// String[] args0 = {
// "hdfs://HadoopMaster:9000/gender/gender.txt",
// "hdfs://HadoopMaster:9000/out/partition/" }; String[] args0 = {
"./data/gender/gender.txt",
"./out/gender" }; int ec = ToolRunner.run(new Configuration(),new Gender(), args0);
System.exit(ec);
}
}

    或者

    代码

package com.dajiangtai.hadoop.junior;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
*
* @function 统计不同年龄段内 男、女最高分数
* @author zhouls
*
*/ /*
Alice<tab>23<tab>female<tab>45
Bob<tab>34<tab>male<tab>89
Chris<tab>67<tab>male<tab>97
Kristine<tab>38<tab>female<tab>53
Connor<tab>25<tab>male<tab>27
Daniel<tab>78<tab>male<tab>95
James<tab>34<tab>male<tab>79
Alex<tab>52<tab>male<tab>69
Nancy<tab>7<tab>female<tab>98
Adam<tab>9<tab>male<tab>37
Jacob<tab>7<tab>male<tab>23
Mary<tab>6<tab>female<tab>93
Clara<tab>87<tab>female<tab>72
Monica<tab>56<tab>female<tab>92
*/
public class Gender extends Configured implements Tool {
/*
*
* @function Mapper 解析输入数据,然后按需求输出
* @input key=行偏移量 value=学生数据
* @output key=gender value=name+age+score
*
*/
public static class PCMapper extends Mapper<Object, Text, Text, Text>
{
public void map(Object key, Text value, Context context) throws IOException, InterruptedException
{//拿Alice<tab>23<tab>female<tab>45
String[] tokens = value.toString().split("<tab>");//使用分隔符<tab>,将数据解析为数组 tokens
//得到Alice 23 female 45
//即tokens[0] tokens[1] tokens[2] tokens[3]
String gender = tokens[].toString();//性别
String nameAgeScore = tokens[] + "\t" + tokens[] + "\t"+ tokens[];
//输出 key=gender value=name+age+score
//输出 key=female value=Alice +23+45
context.write(new Text(gender), new Text(nameAgeScore));//将 (female , Alice+ 23+ 45) 写入到context中
}
}
public static class MyHashPartitioner extends Partitioner<Text, Text>
{
/** Use {@link Object#hashCode()} to partition. */
@Override
public int getPartition(Text key, Text value,int numReduceTasks)
{
return (key.hashCode()) % numReduceTasks;
} }
/**
*
* @function Partitioner 根据 age 选择 reduce 分区
*
*/
public static class PCPartitioner extends Partitioner<Text, Text>
{ @Override
public int getPartition(Text key, Text value, int numReduceTasks)
{
// TODO Auto-generated method stub
String[] nameAgeScore = value.toString().split("\t");
String age = nameAgeScore[];//学生年龄
int ageInt = Integer.parseInt(age);//按年龄段分区 // 默认指定分区 0
if (numReduceTasks == )
return ; //年龄小于等于20,指定分区0
if (ageInt <= ) {
return ;
}
// 年龄大于20,小于等于50,指定分区1
if (ageInt > && ageInt <= ) { return % numReduceTasks;
}
// 剩余年龄,指定分区2
else
return % numReduceTasks;
}
} /**
*
* @function 定义Combiner 合并 Mapper 输出结果
*
*/
public static class PCCombiner extends Reducer<Text, Text, Text, Text>
{
private Text text = new Text(); public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
{
int maxScore = Integer.MIN_VALUE;
String name = " ";
String age = " ";
int score = ;
for (Text val : values)
{
String[] valTokens = val.toString().split("\\t");
score = Integer.parseInt(valTokens[]);
if (score > maxScore)
{
name = valTokens[];
age = valTokens[];
maxScore = score;
}
}
text.set(name + "\t" + age + "\t" + maxScore);
context.write(key, text);
}
} /*
*
* @function Reducer 统计出 不同年龄段、不同性别 的最高分
* input key=gender value=name+age+score
* output key=name value=age+gender+score
*
*/
static class PCReducer extends Reducer<Text, Text, Text, Text>
{
@Override
public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
{
int maxScore = Integer.MIN_VALUE;
String name = " ";
String age = " ";
String gender = " ";
int score = ;
// 根据key,迭代 values 集合,求出最高分
for (Text val : values)
{
String[] valTokens = val.toString().split("\\t");
score = Integer.parseInt(valTokens[]);
if (score > maxScore)
{
name = valTokens[];
age = valTokens[];
gender = key.toString();
maxScore = score;
}
}
context.write(new Text(name), new Text("age- " + age + "\t" + gender + "\tscore-" + maxScore));
}
} /**
* @function 任务驱动方法
* @param args
* @return
* @throws Exception
*/
@Override
public int run(String[] args) throws Exception
{
// TODO Auto-generated method stub
Configuration conf = new Configuration();//读取配置文件 Path mypath = new Path(args[]);
FileSystem hdfs = mypath.getFileSystem(conf);
if (hdfs.isDirectory(mypath))
{
hdfs.delete(mypath, true);
} @SuppressWarnings("deprecation")
Job job = new Job(conf, "gender");//新建一个任务
job.setJarByClass(Gender.class);//主类
job.setMapperClass(PCMapper.class);//Mapper
job.setReducerClass(PCReducer.class);//Reducer job.setPartitionerClass(MyHashPartitioner.class);
//job.setPartitionerClass(PCPartitioner.class);//设置Partitioner类
job.setNumReduceTasks();// reduce个数设置为3 job.setMapOutputKeyClass(Text.class);//map 输出key类型
job.setMapOutputValueClass(Text.class);//map 输出value类型 job.setCombinerClass(PCCombiner.class);//设置Combiner类 job.setOutputKeyClass(Text.class);//输出结果 key类型
job.setOutputValueClass(Text.class);//输出结果 value 类型 FileInputFormat.addInputPath(job, new Path(args[]));// 输入路径
FileOutputFormat.setOutputPath(job, new Path(args[]));// 输出路径
job.waitForCompletion(true);//提交任务
return ;
}
/**
* @function main 方法
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception
{
String[] args0 = {
"hdfs://master:9000/middle/partition/gender.txt",
"hdfs://master:9000/middle/partition/out/" };
int ec = ToolRunner.run(new Configuration(),new Gender(), args0);
System.exit(ec);
}
}

Hadoop MapReduce编程 API入门系列之统计学生成绩版本2(十八)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  2. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  3. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  4. Hadoop MapReduce编程 API入门系列之小文件合并(二十九)

    不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 ...

  5. Hadoop MapReduce编程 API入门系列之薪水统计(三十一)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.SalaryCount; import java.io.IOException; import jav ...

  6. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

  7. Hadoop MapReduce编程 API入门系列之Crime数据分析(二十五)(未完)

    不多说,直接上代码. 一共12列,我们只需提取有用的列:第二列(犯罪类型).第四列(一周的哪一天).第五列(具体时间)和第七列(犯罪场所). 思路分析 基于项目的需求,我们通过以下几步完成: 1.首先 ...

  8. Hadoop MapReduce编程 API入门系列之计数器(二十七)

    不多说,直接上代码. MapReduce 计数器是什么?    计数器是用来记录job的执行进度和状态的.它的作用可以理解为日志.我们可以在程序的某个位置插入计数器,记录数据或者进度的变化情况. Ma ...

  9. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

随机推荐

  1. CNN结构:用于检测的CNN结构进化-结合式方法

    原文链接:何恺明团队提出 Focal Loss,目标检测精度高达39.1AP,打破现有记录     呀 加入Facebook的何凯明继续优化检测CNN网络,arXiv 上发现了何恺明所在 FAIR 团 ...

  2. cannot find Toolkit in /usr/local/cuda-8.0

    对于新版本ubuntukylin17.04安装CUDA时出现 cannot find Toolkit in /usr/local/cuda-8.0 问题 尝试了各种方法,均不妥当...... 参考:h ...

  3. 使用CImage类 显示图片

    在不适用openCv的一种时候,使用CImage显示图片数据,并且直接嵌入DC框中. 使用CImage 在pic控件里显示图片 void CMyCalLawsDlg::MyShowImage( CIm ...

  4. 06--谈谈:C++类的“包含”机制

    谈谈:C++类的“包含”机制   本人在学习Qt的时候发现了一个非常有趣的现象.有很多函数的调用方法都写成了如下的形式: object.func().func2(); 这令小弟着实不懂.在上面这段代码 ...

  5. (转) Arcgis for js加载百度地图

    http://blog.csdn.net/gisshixisheng/article/details/44853709 概述: 在前面的文章里提到了Arcgis for js加载天地图,在本节,继续讲 ...

  6. monkey测试环境搭建 及 操作步骤

    1.环境搭建 a.下载安卓SDK 链接:https://pan.baidu.com/s/1-OB6UVPvl5-N-vFdykfMmA 提取码:3spx b.配置环境变量(配置完成,重启系统,配置生效 ...

  7. 【剑指Offer】50、数组中重复的数字

      题目描述:   在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中任意一个重复的数字. 例如,如果 ...

  8. 利用perf排查sys高的问题

    思路 perf top perf record -C 44,48,60,63 -g -o a.data perf report -i a.data --call-graph 查看调用链,可以确定,基本 ...

  9. XX-Net的完整教程

    1.下载谷歌浏览器,安装. 2.百度搜索github,github中搜索XX-Net,下载稳定版 3.解压缩下载的文件夹,运行start.vbs文件.如果弹出管理员请求权限请允许,弹出防火墙警告,请允 ...

  10. HDU 2266 How Many Equations Can You Find(模拟,深搜)

    题目 这是传说中的深搜吗....不确定,,,,貌似更加像是模拟,,,, //我要做深搜题目拉 //实际上还是模拟 #include<iostream> #include<string ...