不多说,直接上代码。

  统计出每个年龄段的 男、女 学生的最高分

  这里,为了空格符的差错,直接,我们有时候,像如下这样的来排数据。

代码

package zhouls.bigdata.myMapReduce.Gender;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
*
* @function 统计不同年龄段内 男、女最高分数
*
*
*/ /*
Alice<tab>23<tab>female<tab>45
Bob<tab>34<tab>male<tab>89
Chris<tab>67<tab>male<tab>97
Kristine<tab>38<tab>female<tab>53
Connor<tab>25<tab>male<tab>27
Daniel<tab>78<tab>male<tab>95
James<tab>34<tab>male<tab>79
Alex<tab>52<tab>male<tab>69
Nancy<tab>7<tab>female<tab>98
Adam<tab>9<tab>male<tab>37
Jacob<tab>7<tab>male<tab>23
Mary<tab>6<tab>female<tab>93
Clara<tab>87<tab>female<tab>72
Monica<tab>56<tab>female<tab>92
*/
public class Gender extends Configured implements Tool {
/*
*
* @function Mapper 解析输入数据,然后按需求输出
* @input key=行偏移量 value=学生数据
* @output key=gender value=name+age+score
*
*/
public static class PCMapper extends Mapper<Object, Text, Text, Text>
{
public void map(Object key, Text value, Context context) throws IOException, InterruptedException
{//拿Alice<tab>23<tab>female<tab>45
String[] tokens = value.toString().split("<tab>");//使用分隔符<tab>,将数据解析为数组 tokens
//得到Alice 23 female 45
//即tokens[0] tokens[1] tokens[2] tokens[3]
String gender = tokens[].toString();//性别
String nameAgeScore = tokens[] + "\t" + tokens[] + "\t"+ tokens[];
//输出 key=gender value=name+age+score
//输出 key=female value=Alice +23+45
context.write(new Text(gender), new Text(nameAgeScore));//将 (female , Alice+ 23+ 45) 写入到context中
}
}
public static class MyHashPartitioner extends Partitioner<Text, Text>
{
/** Use {@link Object#hashCode()} to partition. */
@Override
public int getPartition(Text key, Text value,int numReduceTasks)
{
return (key.hashCode()) % numReduceTasks;
} }
/**
*
* @function Partitioner 根据 age 选择 reduce 分区
*
*/
public static class PCPartitioner extends Partitioner<Text, Text>
{ @Override
public int getPartition(Text key, Text value, int numReduceTasks)
{
// TODO Auto-generated method stub
String[] nameAgeScore = value.toString().split("\t");
String age = nameAgeScore[];//学生年龄
int ageInt = Integer.parseInt(age);//按年龄段分区 // 默认指定分区 0
if (numReduceTasks == )
return ; //年龄小于等于20,指定分区0
if (ageInt <= ) {
return ;
}
// 年龄大于20,小于等于50,指定分区1
if (ageInt > && ageInt <= ) { return % numReduceTasks;
}
// 剩余年龄,指定分区2
else
return % numReduceTasks;
}
} /**
*
* @function 定义Combiner 合并 Mapper 输出结果
*
*/
public static class PCCombiner extends Reducer<Text, Text, Text, Text>
{
private Text text = new Text(); public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
{
int maxScore = Integer.MIN_VALUE;
String name = " ";
String age = " ";
int score = ;
for (Text val : values)
{
String[] valTokens = val.toString().split("\\t");
score = Integer.parseInt(valTokens[]);
if (score > maxScore)
{
name = valTokens[];
age = valTokens[];
maxScore = score;
}
}
text.set(name + "\t" + age + "\t" + maxScore);
context.write(key, text);
}
} /*
*
* @function Reducer 统计出 不同年龄段、不同性别 的最高分
* input key=gender value=name+age+score
* output key=name value=age+gender+score
*
*/
static class PCReducer extends Reducer<Text, Text, Text, Text>
{
@Override
public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
{
int maxScore = Integer.MIN_VALUE;
String name = " ";
String age = " ";
String gender = " ";
int score = ;
// 根据key,迭代 values 集合,求出最高分
for (Text val : values)
{
String[] valTokens = val.toString().split("\\t");
score = Integer.parseInt(valTokens[]);
if (score > maxScore)
{
name = valTokens[];
age = valTokens[];
gender = key.toString();
maxScore = score;
}
}
context.write(new Text(name), new Text("age- " + age + "\t" + gender + "\tscore-" + maxScore));
}
} /**
* @function 任务驱动方法
* @param args
* @return
* @throws Exception
*/
@Override
public int run(String[] args) throws Exception
{
// TODO Auto-generated method stub
Configuration conf = new Configuration();//读取配置文件 Path mypath = new Path(args[]);
FileSystem hdfs = mypath.getFileSystem(conf);
if (hdfs.isDirectory(mypath))
{
hdfs.delete(mypath, true);
} @SuppressWarnings("deprecation")
Job job = new Job(conf, "gender");//新建一个任务
job.setJarByClass(Gender.class);//主类
job.setMapperClass(PCMapper.class);//Mapper
job.setReducerClass(PCReducer.class);//Reducer job.setPartitionerClass(MyHashPartitioner.class);
//job.setPartitionerClass(PCPartitioner.class);//设置Partitioner类
job.setNumReduceTasks();// reduce个数设置为3 job.setMapOutputKeyClass(Text.class);//map 输出key类型
job.setMapOutputValueClass(Text.class);//map 输出value类型 job.setCombinerClass(PCCombiner.class);//设置Combiner类 job.setOutputKeyClass(Text.class);//输出结果 key类型
job.setOutputValueClass(Text.class);//输出结果 value 类型 FileInputFormat.addInputPath(job, new Path(args[]));// 输入路径
FileOutputFormat.setOutputPath(job, new Path(args[]));// 输出路径
job.waitForCompletion(true);//提交任务
return ;
}
/**
* @function main 方法
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception
{
// String[] args0 = {
// "hdfs://HadoopMaster:9000/gender/gender.txt",
// "hdfs://HadoopMaster:9000/out/partition/" }; String[] args0 = {
"./data/gender/gender.txt",
"./out/gender" }; int ec = ToolRunner.run(new Configuration(),new Gender(), args0);
System.exit(ec);
}
}

    或者

    代码

package com.dajiangtai.hadoop.junior;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
*
* @function 统计不同年龄段内 男、女最高分数
* @author zhouls
*
*/ /*
Alice<tab>23<tab>female<tab>45
Bob<tab>34<tab>male<tab>89
Chris<tab>67<tab>male<tab>97
Kristine<tab>38<tab>female<tab>53
Connor<tab>25<tab>male<tab>27
Daniel<tab>78<tab>male<tab>95
James<tab>34<tab>male<tab>79
Alex<tab>52<tab>male<tab>69
Nancy<tab>7<tab>female<tab>98
Adam<tab>9<tab>male<tab>37
Jacob<tab>7<tab>male<tab>23
Mary<tab>6<tab>female<tab>93
Clara<tab>87<tab>female<tab>72
Monica<tab>56<tab>female<tab>92
*/
public class Gender extends Configured implements Tool {
/*
*
* @function Mapper 解析输入数据,然后按需求输出
* @input key=行偏移量 value=学生数据
* @output key=gender value=name+age+score
*
*/
public static class PCMapper extends Mapper<Object, Text, Text, Text>
{
public void map(Object key, Text value, Context context) throws IOException, InterruptedException
{//拿Alice<tab>23<tab>female<tab>45
String[] tokens = value.toString().split("<tab>");//使用分隔符<tab>,将数据解析为数组 tokens
//得到Alice 23 female 45
//即tokens[0] tokens[1] tokens[2] tokens[3]
String gender = tokens[].toString();//性别
String nameAgeScore = tokens[] + "\t" + tokens[] + "\t"+ tokens[];
//输出 key=gender value=name+age+score
//输出 key=female value=Alice +23+45
context.write(new Text(gender), new Text(nameAgeScore));//将 (female , Alice+ 23+ 45) 写入到context中
}
}
public static class MyHashPartitioner extends Partitioner<Text, Text>
{
/** Use {@link Object#hashCode()} to partition. */
@Override
public int getPartition(Text key, Text value,int numReduceTasks)
{
return (key.hashCode()) % numReduceTasks;
} }
/**
*
* @function Partitioner 根据 age 选择 reduce 分区
*
*/
public static class PCPartitioner extends Partitioner<Text, Text>
{ @Override
public int getPartition(Text key, Text value, int numReduceTasks)
{
// TODO Auto-generated method stub
String[] nameAgeScore = value.toString().split("\t");
String age = nameAgeScore[];//学生年龄
int ageInt = Integer.parseInt(age);//按年龄段分区 // 默认指定分区 0
if (numReduceTasks == )
return ; //年龄小于等于20,指定分区0
if (ageInt <= ) {
return ;
}
// 年龄大于20,小于等于50,指定分区1
if (ageInt > && ageInt <= ) { return % numReduceTasks;
}
// 剩余年龄,指定分区2
else
return % numReduceTasks;
}
} /**
*
* @function 定义Combiner 合并 Mapper 输出结果
*
*/
public static class PCCombiner extends Reducer<Text, Text, Text, Text>
{
private Text text = new Text(); public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
{
int maxScore = Integer.MIN_VALUE;
String name = " ";
String age = " ";
int score = ;
for (Text val : values)
{
String[] valTokens = val.toString().split("\\t");
score = Integer.parseInt(valTokens[]);
if (score > maxScore)
{
name = valTokens[];
age = valTokens[];
maxScore = score;
}
}
text.set(name + "\t" + age + "\t" + maxScore);
context.write(key, text);
}
} /*
*
* @function Reducer 统计出 不同年龄段、不同性别 的最高分
* input key=gender value=name+age+score
* output key=name value=age+gender+score
*
*/
static class PCReducer extends Reducer<Text, Text, Text, Text>
{
@Override
public void reduce(Text key, Iterable<Text> values, Context context)throws IOException, InterruptedException
{
int maxScore = Integer.MIN_VALUE;
String name = " ";
String age = " ";
String gender = " ";
int score = ;
// 根据key,迭代 values 集合,求出最高分
for (Text val : values)
{
String[] valTokens = val.toString().split("\\t");
score = Integer.parseInt(valTokens[]);
if (score > maxScore)
{
name = valTokens[];
age = valTokens[];
gender = key.toString();
maxScore = score;
}
}
context.write(new Text(name), new Text("age- " + age + "\t" + gender + "\tscore-" + maxScore));
}
} /**
* @function 任务驱动方法
* @param args
* @return
* @throws Exception
*/
@Override
public int run(String[] args) throws Exception
{
// TODO Auto-generated method stub
Configuration conf = new Configuration();//读取配置文件 Path mypath = new Path(args[]);
FileSystem hdfs = mypath.getFileSystem(conf);
if (hdfs.isDirectory(mypath))
{
hdfs.delete(mypath, true);
} @SuppressWarnings("deprecation")
Job job = new Job(conf, "gender");//新建一个任务
job.setJarByClass(Gender.class);//主类
job.setMapperClass(PCMapper.class);//Mapper
job.setReducerClass(PCReducer.class);//Reducer job.setPartitionerClass(MyHashPartitioner.class);
//job.setPartitionerClass(PCPartitioner.class);//设置Partitioner类
job.setNumReduceTasks();// reduce个数设置为3 job.setMapOutputKeyClass(Text.class);//map 输出key类型
job.setMapOutputValueClass(Text.class);//map 输出value类型 job.setCombinerClass(PCCombiner.class);//设置Combiner类 job.setOutputKeyClass(Text.class);//输出结果 key类型
job.setOutputValueClass(Text.class);//输出结果 value 类型 FileInputFormat.addInputPath(job, new Path(args[]));// 输入路径
FileOutputFormat.setOutputPath(job, new Path(args[]));// 输出路径
job.waitForCompletion(true);//提交任务
return ;
}
/**
* @function main 方法
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception
{
String[] args0 = {
"hdfs://master:9000/middle/partition/gender.txt",
"hdfs://master:9000/middle/partition/out/" };
int ec = ToolRunner.run(new Configuration(),new Gender(), args0);
System.exit(ec);
}
}

Hadoop MapReduce编程 API入门系列之统计学生成绩版本2(十八)的更多相关文章

  1. Hadoop MapReduce编程 API入门系列之压缩和计数器(三十)

    不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce. ...

  2. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本2(十)

    下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 这篇博文,包括了,实际生产开发非常重要的,单元测试和调试代码.这里不多赘述,直接送上代码. MRUni ...

  3. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本3(九)

    不多说,直接上干货! 下面,是版本1. Hadoop MapReduce编程 API入门系列之挖掘气象数据版本1(一) 下面是版本2. Hadoop MapReduce编程 API入门系列之挖掘气象数 ...

  4. Hadoop MapReduce编程 API入门系列之小文件合并(二十九)

    不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 ...

  5. Hadoop MapReduce编程 API入门系列之薪水统计(三十一)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.SalaryCount; import java.io.IOException; import jav ...

  6. Hadoop MapReduce编程 API入门系列之MapReduce多种输入格式(十七)

    不多说,直接上代码. 代码 package zhouls.bigdata.myMapReduce.ScoreCount; import java.io.DataInput; import java.i ...

  7. Hadoop MapReduce编程 API入门系列之Crime数据分析(二十五)(未完)

    不多说,直接上代码. 一共12列,我们只需提取有用的列:第二列(犯罪类型).第四列(一周的哪一天).第五列(具体时间)和第七列(犯罪场所). 思路分析 基于项目的需求,我们通过以下几步完成: 1.首先 ...

  8. Hadoop MapReduce编程 API入门系列之计数器(二十七)

    不多说,直接上代码. MapReduce 计数器是什么?    计数器是用来记录job的执行进度和状态的.它的作用可以理解为日志.我们可以在程序的某个位置插入计数器,记录数据或者进度的变化情况. Ma ...

  9. Hadoop MapReduce编程 API入门系列之join(二十六)(未完)

    不多说,直接上代码. 天气记录数据库 Station ID Timestamp Temperature 气象站数据库 Station ID Station Name 气象站和天气记录合并之后的示意图如 ...

随机推荐

  1. ABP(http://www.aspnetboilerplate.com/)下载初始化

    官网:http://www.aspnetboilerplate.com/ 下载 下载完成后用vs2015打开,是2015,低版本打开可能会出现一些问题 生成项目,Nuget会自动下载需要的类库 ABP ...

  2. sql 排序

    select count(*) from vote group by contents PERCENT * from vote order by contents)as A group by cont ...

  3. PAT_A1127#ZigZagging on a Tree

    Source: PAT A1127 ZigZagging on a Tree (30 分) Description: Suppose that all the keys in a binary tre ...

  4. 【剑指Offer】 24、二叉树中和为某一值的路径

      题目描述:   输入一颗二叉树的根结点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中, ...

  5. Springmvc中ajax与jason应用

    Springmvc中ajax与jason应用 相关依赖包 json数据转换的jar包 jackson-annotations-2.5.4 jackson-core-2.5.4 jackson-data ...

  6. kissui.scrollanim页面滚动动画库插件

    简介 kissui.scrollanim是一款实用的纯JS和CSS3页面滚动动画库插件.通过该插件可以使元素进入浏览器视口的时候,展示指定的CSS3动画效果. 下载地址及演示 在线演示 在线下载 安装 ...

  7. Redis 应用场景【商品拼团抢购】

    使用到 redis-list llen 命令:获取列表的长度,如果列表key不存在那么也是返回0,如果给的key不是一个列表类型会返回一个错误 lpush命令:将值插入到列表头部,如果 key 不存在 ...

  8. 《奋斗吧!菜鸟》 第八次作业:Alpha冲刺 Scrum meeting 4

    项目 内容 这个作业属于哪个课程 任课教师链接 作业要求 https://www.cnblogs.com/nwnu-daizh/p/11012922.html 团队名称 奋斗吧!菜鸟 作业学习目标 A ...

  9. 【[Offer收割]编程练习赛10 C】区间价值

    [题目链接]:http://hihocoder.com/problemset/problem/1483 [题意] 中文题 [题解] 二分最后的答案; 二分的时候; 对于每一个枚举的值x; 计算小于等于 ...

  10. 【hihocoder 1295】Eular质数筛法

    [题目链接]:http://hihocoder.com/problemset/problem/1295 [题意] [题解] 可以在O(N)的复杂度内求出1..N里面的所有素数; 当然受空间限制,N可能 ...