[物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.3 媒质中电磁场量的表示
1. 电磁能量密度 $$\bex \cfrac{1}{2}({\bf E}\cdot{\bf D}+{\bf B}\cdot{\bf H}). \eex$$
2. 电磁能量流密度向量 $$\bex {\bf S}={\bf E}\times{\bf H}. \eex$$
3. 电磁动量密度向量 $$\bex \cfrac{{\bf S}}{c}. \eex$$
4. 电磁动量流密度张量 $$\bex \cfrac{1}{2}(\ve E^2+\mu H^2){\bf I}-\ve{\bf E}\otimes{\bf E}-\mu{\bf H}\otimes{\bf H}. \eex$$
[物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.3 媒质中电磁场量的表示的更多相关文章
- [物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.2 Lorentz 力
1. Lorentz 假定, 不论带电体的运动状态如何, 其所受的力密度 (单位体积所受的力) 为 $$\bex {\bf F}=\rho {\bf E}+{\bf j}\times{\bf B} = ...
- [物理学与PDEs]第1章第3节 真空中的 Maxwell 方程组, Lorentz 力 3.1 真空中的 Maxwell 方程组
1.稍微修正以前局部使用的方程组可以得到真空中的 Maxwell 方程组: $$\beex \bea \Div {\bf E}&=\cfrac{\rho}{\ve_0},\\ \rot{\bf ...
- [物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.2 媒质交界面上的条件
通过 Maxwell 方程组的积分形式易在交界面上各量应满足交界面条件: $$\beex \bea \sez{{\bf D}}\cdot{\bf n}=\omega_f,&\sex{\omeg ...
- [物理学与PDEs]第1章第7节 媒质中的 Maxwell 方程组 7.1 媒质中的 Maxwell 方程组
1.媒质的极化 (1) 束缚电荷: 被束缚在原来位置上的电荷. (2) 在电磁场中, 束缚电荷会有一微小的运动, 而产生电偶极矩. 此即称为媒质的极化. (3) 设电极化强度 (单位体积的电偶极矩) ...
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达
设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式. 证明: 若贮能函数 $W$ 满足 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
随机推荐
- 设置TextBlock默认样式后,其他控件的Text相关属性设置失效问题
问题: 定义了默认TextBlock样式后,再次自定义下拉框 or 其他控件 ,当内部含有TextBlock时,设置控件的字体相关样式无效,系统始终使用TextBlock设置默认样式 解决方案: 为相 ...
- 生成文件的MD5值
import hashlib #########测试################# m = hashlib.md5() m.update(b"hello") m.update( ...
- Javascrip 入门第三节课
一.location对象 location.href 获取当前网页的URLlocation.search() 获取?之后的请求信息 location.href="URL" // 跳 ...
- 0106笔记--vc2012 打印堆栈
清空icound 菜单 调试-->选项和设置--->常规--->启用调试助手 要把在未经处理的异常上展开调用堆栈选中: 然后就有
- slice()和splice()区别
1.slice(start,end):方法可从已有数组中返回选定的元素,返回一个新数组,包含从start到end(不包含该元素)的数组元素. 注意:该方法不会改变原数组,而是返回一个子数组,如果想删除 ...
- spring boot +mybatis(通过properties配置) 集成
注:日常学习记录贴,下面描述的有误解的话请指出,大家一同学习. 因为我公司现在用的是postgresql数据库,所以我也用postgresql进行测试 一.前言 1.Spring boot 会默认读取 ...
- IDEA+快捷键
格式化代码:ctrl+alt+L IDEA快捷键管理:https://blog.csdn.net/h8178/article/details/78328097 (duplicate:为复制上一行)
- 手把手教你发布一个Python包
本文主题如下: 编写一个包(Python 源代码),但不是本文的重点. 编译包,观察编译后的文件. 发布包,发布的包可以有多种类型. 如何在 Pypi 中查看已发布的包 注意: 本文编写的包在 Pyt ...
- vue中使用LESS、SASS、stylus
less的使用 npm install less less-loader --save 修改webpack.config.js文件.vue.cli 搭建项目可跳过此步 { test: /\.less$ ...
- Kubernetes — Job与CronJob
有一类作业显然不满足这样的条件,这就是“离线业务”,或者叫作 Batch Job(计算业务). 这 种业务在计算完成后就直接退出了,而此时如果你依然用 Deployment 来管理这种业务的话,就会 ...