python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比

附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/linyi0604/MachineLearning

 import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier '''
集成分类器:
综合考量多个分类器的预测结果做出考量。
这种综合考量大体上分两种:
1 搭建多个独立的分类模型,然后通过投票的方式 比如 随机森林分类器
随机森林在训练数据上同时搭建多棵决策树,这些决策树在构建的时候会放弃唯一算法,随机选取特征
2 按照一定次序搭建多个分类模型,
他们之间存在依赖关系,每一个后续模型的加入都需要现有模型的综合性能贡献,
从多个较弱的分类器搭建出一个较为强大的分类器,比如梯度提升决策树
提督森林决策树在建立的时候尽可能降低成体在拟合数据上的误差。 下面将对比 单一决策树 随机森林 梯度提升决策树 的预测情况 ''' '''
1 准备数据
'''
# 读取泰坦尼克乘客数据,已经从互联网下载到本地
titanic = pd.read_csv("./data/titanic/titanic.txt")
# 观察数据发现有缺失现象
# print(titanic.head()) # 提取关键特征,sex, age, pclass都很有可能影响是否幸免
x = titanic[['pclass', 'age', 'sex']]
y = titanic['survived']
# 查看当前选择的特征
# print(x.info())
'''
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1313 entries, 0 to 1312
Data columns (total 3 columns):
pclass 1313 non-null object
age 633 non-null float64
sex 1313 non-null object
dtypes: float64(1), object(2)
memory usage: 30.9+ KB
None
'''
# age数据列 只有633个,对于空缺的 采用平均数或者中位数进行补充 希望对模型影响小
x['age'].fillna(x['age'].mean(), inplace=True) '''
2 数据分割
'''
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33)
# 使用特征转换器进行特征抽取
vec = DictVectorizer()
# 类别型的数据会抽离出来 数据型的会保持不变
x_train = vec.fit_transform(x_train.to_dict(orient="record"))
# print(vec.feature_names_) # ['age', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', 'sex=female', 'sex=male']
x_test = vec.transform(x_test.to_dict(orient="record")) '''
3.1 单一决策树 训练模型 进行预测
'''
# 初始化决策树分类器
dtc = DecisionTreeClassifier()
# 训练
dtc.fit(x_train, y_train)
# 预测 保存结果
dtc_y_predict = dtc.predict(x_test) '''
3.2 使用随机森林 训练模型 进行预测
'''
# 初始化随机森林分类器
rfc = RandomForestClassifier()
# 训练
rfc.fit(x_train, y_train)
# 预测
rfc_y_predict = rfc.predict(x_test) '''
3.3 使用梯度提升决策树进行模型训练和预测
'''
# 初始化分类器
gbc = GradientBoostingClassifier()
# 训练
gbc.fit(x_train, y_train)
# 预测
gbc_y_predict = gbc.predict(x_test) '''
4 模型评估
'''
print("单一决策树准确度:", dtc.score(x_test, y_test))
print("其他指标:\n", classification_report(dtc_y_predict, y_test, target_names=['died', 'survived'])) print("随机森林准确度:", rfc.score(x_test, y_test))
print("其他指标:\n", classification_report(rfc_y_predict, y_test, target_names=['died', 'survived'])) print("梯度提升决策树准确度:", gbc.score(x_test, y_test))
print("其他指标:\n", classification_report(gbc_y_predict, y_test, target_names=['died', 'survived'])) '''
单一决策树准确度: 0.7811550151975684
其他指标:
precision recall f1-score support died 0.91 0.78 0.84 236
survived 0.58 0.80 0.67 93 avg / total 0.81 0.78 0.79 329 随机森林准确度: 0.78419452887538
其他指标:
precision recall f1-score support died 0.91 0.78 0.84 237
survived 0.58 0.80 0.68 92 avg / total 0.82 0.78 0.79 329 梯度提升决策树准确度: 0.790273556231003
其他指标:
precision recall f1-score support died 0.92 0.78 0.84 239
survived 0.58 0.82 0.68 90 avg / total 0.83 0.79 0.80 329 '''

机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者的更多相关文章

  1. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  2. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  3. 吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  4. Python 实现的随机森林

    随机森林是一个高度灵活的机器学习方法,拥有广泛的应用前景,从市场营销到医疗保健保险. 既可以用来做市场营销模拟的建模,统计客户来源,保留和流失.也可用来预测疾病的风险和病患者的易感性. 随机森林是一个 ...

  5. Spark2.0机器学习系列之6:GBDT(梯度提升决策树)、GBDT与随机森林差异、参数调试及Scikit代码分析

    概念梳理 GBDT的别称 GBDT(Gradient Boost Decision Tree),梯度提升决策树.     GBDT这个算法还有一些其他的名字,比如说MART(Multiple Addi ...

  6. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  7. chapter02 三种决策树模型:单一决策树、随机森林、GBDT(梯度提升决策树) 预测泰坦尼克号乘客生还情况

    单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型, ...

  8. [机器学习]梯度提升决策树--GBDT

    概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由 ...

  9. 【深度森林第三弹】周志华等提出梯度提升决策树再胜DNN

    [深度森林第三弹]周志华等提出梯度提升决策树再胜DNN   技术小能手 2018-06-04 14:39:46 浏览848 分布式 性能 神经网络   还记得周志华教授等人的“深度森林”论文吗?今天, ...

随机推荐

  1. HTTP请求方法 之 HEAD

    HTTP请求方法并不是只有GET和POST,只是最常用的.据RFC2616标准(现行的HTTP/1.1)得知,通常有以下8种方法:OPTIONS.GET.HEAD.POST.PUT.DELETE.TR ...

  2. Electron build 无法下载 winCodeSign 等资源

    将 7z 文件下载到 以下 cache 目录并解压 macOS: ~/Library/Caches/electron-builder Linux: ~/.cache/electron-builder ...

  3. 一个罕见的MSSQL注入漏洞案例

    一个罕见的MSSQL注入漏洞案例 这里作者准备分享一个在去年Google赏金计划中发现的相当罕见漏洞,也是作者在整个渗透测试生涯中唯一一次遇到的. 目标网站使用了微软 SQL Server 数据库并且 ...

  4. Wannacry样本取证特征与清除

    一.取证特征 1)网络域名特征 http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com 2)文件特征 母体文件 mssecsvc.exe c: ...

  5.  Meltdown论文翻译【转】

    转自:http://www.wowotech.net/basic_subject/meltdown.html#6596 摘要(Abstract) The security of computer sy ...

  6. Southwestern Europe Regional Contest 2015 题解

    题目链接:http://codeforces.com/gym/101128 题目数7/10 Rank 34/209 A: 题意:给出一张n个点的有向图表示一家有n个员工的公司的隶属图,u->v表 ...

  7. maven2 up to maven3的'version' contains an expression but should be a constant

    在Maven2时,为了保障版本一致,一般之前我们的做法时: Parent Pom中 <project xmlns="http://maven.apache.org/POM/4.0.0& ...

  8. linux文件管理 -> 系统目录结构

    几乎所有的计算机操作系统都是用目录结构组织文件.具体来说就是在一个目录中存放子目录和文件, 而在子目录中又会进一步存放子目录和文件,以此类推形成一个树状的文件结构,由于其结构很像一棵树的分支, 所以该 ...

  9. MAVLink v1.0详解——结构

    本文针对 MAVLink v1.0版本,协议版本:3. MAVLink是为微型飞行器MAV(Micro Air Vehicle)设计的(LGPL)开源的通讯协议.是无人飞行器和地面站(Ground C ...

  10. 06 Frequently Asked Questions (FAQ) 常见问题解答 (常见问题)

    Frequently Asked Questions (FAQ) Origins 起源 What is the purpose of the project? What is the history ...