题解

这道题是求一个有向图的外向生成树

入度矩阵对应着外向生成树,出度矩阵对应着内向生成树,知道了这个就可以求出基尔霍夫矩阵了,同时n - 1阶主子式一定要删掉根节点的一行一列

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define RG register
#define MAXN 200005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) putchar('-'),x = -x;
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int inc(int a,int b) {
a = a + b;
if(a >= MOD) a -= MOD;
return a;
} int fpow(int x,int c) {
int res = 1,t = x % MOD;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
} int N,g[305][305],ind[305];
char s[305];
int Calc() {
int res = 1;
for(int i = 2 ; i <= N ; ++i) {
int l = i;
for(int j = i + 1; j <= N ; ++j) {
if(abs(g[j][i]) > abs(g[l][i])) l = j;
}
if(l != i) {
for(int j = i ; j <= N ; ++j) swap(g[l][j],g[i][j]);
res = -res;
}
for(int j = i + 1 ; j <= N ; ++j) {
int t = mul(g[j][i],fpow(g[i][i],MOD - 2));
for(int k = i ; k <= N ; ++k) {
g[j][k] = inc(g[j][k],MOD - mul(t,g[i][k]));
}
}
}
if(res < 0) res = MOD - 1;
for(int i = 2 ; i <= N ; ++i) {
res = mul(res,g[i][i]);
}
return res;
}
void Solve() {
read(N);
for(int i = 1 ; i <= N ; ++i) {
scanf("%s",s + 1);
for(int j = 1 ; j <= N ; ++j) {
g[i][j] = s[j] - '0';
if(g[i][j]) {
++ind[j];
g[i][j] = MOD - 1;
}
}
}
for(int i = 1 ; i <= N ; ++i) g[i][i] = ind[i];
out(Calc());enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【BZOJ】4894: 天赋的更多相关文章

  1. bzoj 4894: 天赋

    Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有 一些天赋必须是要有前置天赋才能够学习得到的.也就是说,有一些天赋必须是要在 ...

  2. BZOJ.4894.天赋(Matrix Tree定理 辗转相除)

    题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...

  3. bzoj 4897 天赋 有向图的矩阵数定理

    4894: 天赋 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 104  Solved: 80[Submit][Status][Discuss] De ...

  4. BZOJ 4894 有向图 外向生成树个数

    4894: 天赋 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 191  Solved: 150[Submit][Status][Discuss] D ...

  5. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  6. 【Learning】矩阵树定理 Matrix-Tree

    矩阵树定理 Matrix Tree ​ 矩阵树定理主要用于图的生成树计数. 看到给出图求生成树的这类问题就大概要往这方面想了. 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理, ...

  7. 【BZOJ4894】天赋(矩阵树定理)

    [BZOJ4894]天赋(矩阵树定理) 题面 BZOJ Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有 一些天赋必须是要有 ...

  8. 洛谷 P2587 BZOJ 1034 [ZJOI2008]泡泡堂

    题目描述 //不知道为什么BZOJ和洛谷都没有这幅图了,大牛们几年前的博客上都有这幅图的,把它贴上来吧 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省 ...

  9. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

随机推荐

  1. [洛谷P4491] [HAOI2018]染色

    洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...

  2. 关于thinkpad安装win10操作系统

    thinkpad预装的是win8或者win10,会有自己的分区方式是GPT,所以会出现两个引导分区. F2进入tinkpad的bios,F12进入启动选项 我们用pe进入后,用分区工具删除两个分区,然 ...

  3. 悲催的IE6 七宗罪大吐槽(带解决方法)第一部分

    一.奇数宽高 悲剧的IE6啊,为何有如此多bug,但用户市场又那么大,真让我们搞网站的纠结.今天就遇到了一个非常奇怪但又很细节的一个bug,一个外部的相对定位div,内部一个绝对定位的div(righ ...

  4. sklearn_PCA主成分降维

    # coding:utf-8 import pandas as pd import numpy as np from pandas import Series,DataFramefrom sklear ...

  5. F5后端nginx+tomcat应用如何获得用户的真实ip【转】

    根据业务需要要求记录每个通过wap或者客户端访问我们服务器的用户真实ip但是由于业务前端部署了两个3900系列的F5设备导致程序一直获得F5设备自身的ip,所以笔者考虑可能是因为F5导致无法获得用户的 ...

  6. 去除TFS版本控制

    对于曾经做过TFS版本控制的项目,在版本控制服务不可用的时候,依然会在每次打开项目的时候都提示:当前项目是版本控制的项目,但是当前版本控制不可用,balabala的信息,如果是需要进行版本控制的项目在 ...

  7. 安装Visual Studio Scrum 1.0过程模板

    近几年里,Scrum变成了相当流行的软件开发方法学.因为它轻量.可迭代且快速等优点,以致于在敏捷开发中极受欢迎.微软甚至将TFS2010自带的MSF Agile5.0过程模板做得像Scrum,开发者们 ...

  8. 【自用】bat ftp下载前一天备份

    @echo off rem 指定FTP用户名 set ftpUser=app rem 指定FTP密码 set ftpPass=app rem 指定FTP服务器地址 set ftpIP=192.168. ...

  9. php中heredoc的使用方法

    Heredoc技术,在正规的PHP文档中和技术书籍中一般没有详细讲述,只是提到了这是一种Perl风格的字符串输出技术.但是现在的一些论坛程序,和部分文章系统,都巧妙的使用heredoc技术,来部分的实 ...

  10. ios 个人开发者账户 给其他团队用坑爹的教程

    最新版本的 ios  支持 3个开发者证书 和 3个发布者证书  ,如果是多余3台电脑设备要真机调试,就比较麻烦 (手机支持100个设备) 解决方案就是: 在别人的电脑上要成功安装,须具备两个文件: ...