以下用sns作为seaborn的别名

1.seaborn整体布局设置

  sns.set_syle()函数设置图的风格,传入的参数可以是"darkgrid", "whitegrid", "dark", "white", "ticks", 分别代表五种风格。sns.despine()可以去掉右边和上面的边线。

下面的代码画出五种风格的图

 import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt def sinplot(ax):
x = np.linspace(, , )
for i in range():
y = np.sin(x+i*)*(-i)
ax.plot(x, y) style = ["darkgrid", "whitegrid", "dark", "white", "ticks"]
print(style[]) plt.figure(figsize=(, ))
for i in range():
sns.set_style(style[i]) #设置样式一定要在子图的定义之前!!!!!!!
ax = plt.subplot(, , i+)
ax.set_title(style[i])
sinplot(ax) plt.show()

运行结果如下

2.关于seaborn设置样式是针对哪个图形区(subplot)的问题

下面是我做的一个实验性的代码

 import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt fig = plt.figure(figsize=(,))
x = np.linspace(, *np.pi, )
y = np.sin(x)
ax_sin = plt.subplot(, , )
sns.set() #根据就近原则,这里的set操作是针对最近未定义的图形区ax_cos的
sns.despine(offset=) #根据就近原则,这里的despine操作是针对最近定义的图形区ax_cos的
plt.plot(x, y) #根据就近原则,这里的plot操作是针对最近定义的图形区ax_sin的
z = np.cos(x)
ax_cos = plt.subplot(, , )
plt.plot(x, z) #根据就近原则,这里的plot操作是针对最近定义的图形区ax_cos的
plt.show()

  运行结果如下,根据运行结果可以推测,seaborn的despine操作和pyplot的plot操作都是在最近已经定义的图形区上,例如代码12,13行是在ax_sin上操作的,而11行的set是在即将定义的图形区上操作,

即ax_cos上操作。至于为什么会有这个规律以及有没有相关总结,关于哪些操作是在最近已经定义的图形区上还是在即将定义的图形区上进行暂时我还不清楚,希望有大神能指点一下。

3.上面的问题可以用with语句解决了嘻嘻

放代码

 import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt fig = plt.figure(figsize=(,))
x = np.linspace(, *np.pi, )
y = np.sin(x)
with sns.axes_style("darkgrid"):
ax_sin = plt.subplot(, , )
sns.despine(offset=) #根据就近原则,这里的despine操作是针对最近定义的图形区ax_cos的
plt.plot(x, y) #根据就近原则,这里的plot操作是针对最近定义的图形区ax_sin的
with sns.axes_style("whitegrid"):
z = np.cos(x)
ax_cos = plt.subplot(, , )
plt.plot(x, z) #根据就近原则,这里的plot操作是针对最近定义的图形区ax_cos的
plt.show()

运行结果如下

4.set_context()函数,可以传四个参数"paper", "talk", "notebook", "poster",用于设置坐标轴风格

5.后面偷懒不记了,感觉这个以后用的不多,关于该课程的知识点这个简书链接可以看到:

https://www.jianshu.com/p/8ccfcd6e4d25

用seaborn对数据可视化的更多相关文章

  1. seaborn线性关系数据可视化:时间线图|热图|结构化图表可视化

    一.线性关系数据可视化lmplot( ) 表示对所统计的数据做散点图,并拟合一个一元线性回归关系. lmplot(x, y, data, hue=None, col=None, row=None, p ...

  2. seaborn分类数据可视化

    转载:https://cloud.tencent.com/developer/article/1178368 seaborn针对分类型的数据有专门的可视化函数,这些函数可大致分为三种: 分类数据散点图 ...

  3. seaborn分类数据可视化:散点图|箱型图|小提琴图|lv图|柱状图|折线图

    一.散点图stripplot( ) 与swarmplot() 1.分类散点图stripplot( ) 用法stripplot(x=None, y=None, hue=None, data=None, ...

  4. seaborn分布数据可视化:直方图|密度图|散点图

    系统自带的数据表格(存放在github上https://github.com/mwaskom/seaborn-data),使用时通过sns.load_dataset('表名称')即可,结果为一个Dat ...

  5. Seaborn数据可视化入门

    在本节学习中,我们使用Seaborn作为数据可视化的入门工具 Seaborn的官方网址如下:http://seaborn.pydata.org 一:definition Seaborn is a Py ...

  6. Python Seaborn综合指南,成为数据可视化专家

    概述 Seaborn是Python流行的数据可视化库 Seaborn结合了美学和技术,这是数据科学项目中的两个关键要素 了解其Seaborn作原理以及使用它生成的不同的图表 介绍 一个精心设计的可视化 ...

  7. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  8. 数据可视化 seaborn绘图(1)

    seaborn是基于matplotlib的数据可视化库.提供更高层的抽象接口.绘图效果也更好. 用seaborn探索数据分布 绘制单变量分布 绘制二变量分布 成对的数据关系可视化 绘制单变量分布 se ...

  9. Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图

    1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...

随机推荐

  1. Java学习02-web.xml配置详解

    <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http:// ...

  2. VS2013 删除"附加依赖项"中“继承的值”

    经过好几次尝试,都无法在VS2013中直接删除“继承的值”,于是另辟蹊径,找到了一种解决方法. 相对而言,在 VS2010 中干这件事会容易一点,或者说,成功率更高一点,于是,我的思路就是再装一个 V ...

  3. P1903 奖学金题解

    众所周知,这是一道通过struct结构体进行排序的题目 思路:平常的输入.. 然后定义一个结构体grade,存放每个学生的学号.三科成绩.(也可以只存语文成绩和总分和学号) 自定义cmp函数,通过三层 ...

  4. elk搭建的详细步骤以及说明

    一:准备工作 1.准备一台虚拟机 192.168.175.222      elk-node2 2.关闭防火墙以及selinux 命令:systemctl stop firewalld       # ...

  5. 转载:网络编程 socket 可读可写条件判断

    转自:http://blog.csdn.net/majianfei1023/article/details/45788591 要了解socket可读可写条件,我们先了解几个概念:1.接收缓存区低水位标 ...

  6. CentOS 7安装MySQL 8——萌新超详细教程

          1.配置MySQL 8.0的安装源:   sudo rpm -Uvh https://dev.mysql.com/get/mysql80-community-release-el7-1.n ...

  7. pro git学习笔记

  8. Java并发编程实战 第13章 显式锁

    接口Lock的实现类: ReentrantLock, ReentrantReadWriteLock.ReadLock, ReentrantReadWriteLock.WriteLock Reentra ...

  9. DevExpress v19.1新版亮点——WinForms篇(五)

    行业领先的.NET界面控件DevExpress v19.1终于正式发布,本站将以连载的形式介绍各版本新增内容.在本系列文章中将为大家介绍DevExpress WinForms v19.1中新增的一些控 ...

  10. python之路day14--列表生成式、生成器generator、生成器并行

    列表生成式 列表生成式阅读量: 44   现在有个需求,现有列表a=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求你把列表里的每个值加1,你怎么实现?你可能会想到2种方式 二逼青年 ...