以下用sns作为seaborn的别名

1.seaborn整体布局设置

  sns.set_syle()函数设置图的风格,传入的参数可以是"darkgrid", "whitegrid", "dark", "white", "ticks", 分别代表五种风格。sns.despine()可以去掉右边和上面的边线。

下面的代码画出五种风格的图

 import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt def sinplot(ax):
x = np.linspace(, , )
for i in range():
y = np.sin(x+i*)*(-i)
ax.plot(x, y) style = ["darkgrid", "whitegrid", "dark", "white", "ticks"]
print(style[]) plt.figure(figsize=(, ))
for i in range():
sns.set_style(style[i]) #设置样式一定要在子图的定义之前!!!!!!!
ax = plt.subplot(, , i+)
ax.set_title(style[i])
sinplot(ax) plt.show()

运行结果如下

2.关于seaborn设置样式是针对哪个图形区(subplot)的问题

下面是我做的一个实验性的代码

 import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt fig = plt.figure(figsize=(,))
x = np.linspace(, *np.pi, )
y = np.sin(x)
ax_sin = plt.subplot(, , )
sns.set() #根据就近原则,这里的set操作是针对最近未定义的图形区ax_cos的
sns.despine(offset=) #根据就近原则,这里的despine操作是针对最近定义的图形区ax_cos的
plt.plot(x, y) #根据就近原则,这里的plot操作是针对最近定义的图形区ax_sin的
z = np.cos(x)
ax_cos = plt.subplot(, , )
plt.plot(x, z) #根据就近原则,这里的plot操作是针对最近定义的图形区ax_cos的
plt.show()

  运行结果如下,根据运行结果可以推测,seaborn的despine操作和pyplot的plot操作都是在最近已经定义的图形区上,例如代码12,13行是在ax_sin上操作的,而11行的set是在即将定义的图形区上操作,

即ax_cos上操作。至于为什么会有这个规律以及有没有相关总结,关于哪些操作是在最近已经定义的图形区上还是在即将定义的图形区上进行暂时我还不清楚,希望有大神能指点一下。

3.上面的问题可以用with语句解决了嘻嘻

放代码

 import seaborn as sns
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt fig = plt.figure(figsize=(,))
x = np.linspace(, *np.pi, )
y = np.sin(x)
with sns.axes_style("darkgrid"):
ax_sin = plt.subplot(, , )
sns.despine(offset=) #根据就近原则,这里的despine操作是针对最近定义的图形区ax_cos的
plt.plot(x, y) #根据就近原则,这里的plot操作是针对最近定义的图形区ax_sin的
with sns.axes_style("whitegrid"):
z = np.cos(x)
ax_cos = plt.subplot(, , )
plt.plot(x, z) #根据就近原则,这里的plot操作是针对最近定义的图形区ax_cos的
plt.show()

运行结果如下

4.set_context()函数,可以传四个参数"paper", "talk", "notebook", "poster",用于设置坐标轴风格

5.后面偷懒不记了,感觉这个以后用的不多,关于该课程的知识点这个简书链接可以看到:

https://www.jianshu.com/p/8ccfcd6e4d25

用seaborn对数据可视化的更多相关文章

  1. seaborn线性关系数据可视化:时间线图|热图|结构化图表可视化

    一.线性关系数据可视化lmplot( ) 表示对所统计的数据做散点图,并拟合一个一元线性回归关系. lmplot(x, y, data, hue=None, col=None, row=None, p ...

  2. seaborn分类数据可视化

    转载:https://cloud.tencent.com/developer/article/1178368 seaborn针对分类型的数据有专门的可视化函数,这些函数可大致分为三种: 分类数据散点图 ...

  3. seaborn分类数据可视化:散点图|箱型图|小提琴图|lv图|柱状图|折线图

    一.散点图stripplot( ) 与swarmplot() 1.分类散点图stripplot( ) 用法stripplot(x=None, y=None, hue=None, data=None, ...

  4. seaborn分布数据可视化:直方图|密度图|散点图

    系统自带的数据表格(存放在github上https://github.com/mwaskom/seaborn-data),使用时通过sns.load_dataset('表名称')即可,结果为一个Dat ...

  5. Seaborn数据可视化入门

    在本节学习中,我们使用Seaborn作为数据可视化的入门工具 Seaborn的官方网址如下:http://seaborn.pydata.org 一:definition Seaborn is a Py ...

  6. Python Seaborn综合指南,成为数据可视化专家

    概述 Seaborn是Python流行的数据可视化库 Seaborn结合了美学和技术,这是数据科学项目中的两个关键要素 了解其Seaborn作原理以及使用它生成的不同的图表 介绍 一个精心设计的可视化 ...

  7. Python数据可视化-seaborn库之countplot

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...

  8. 数据可视化 seaborn绘图(1)

    seaborn是基于matplotlib的数据可视化库.提供更高层的抽象接口.绘图效果也更好. 用seaborn探索数据分布 绘制单变量分布 绘制二变量分布 成对的数据关系可视化 绘制单变量分布 se ...

  9. Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图

    1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...

随机推荐

  1. JavaScript双重排序

    前言:正好这两天正在做一个功能,需要在前台进行排序展示,因为是动态的,后台排序不能搞定,只能咋前台通过JS来进行排序展示,所以我们用sort()来解决这个问题,sort不仅能给数组,对象,集合进行简单 ...

  2. xavier_uniform/xavier_normal

    import math from torch.autograd import Variable import torch import torch.nn as nn import warnings w ...

  3. SpringMVC 向前台页面传值-ModelAndView

    ModelAndView 该对象中包含了一个model属性和一个view属性 model:其实是一个ModelMap类型.其实ModelMap是一个LinkedHashMap的子类 view:包含了一 ...

  4. Python修炼之路-数据类型

    Python编程之列表 列表是一个使用一对中括号"[   ]" 括起来的有序的集合,可以通过索引访问列表元素,也可以增加和删除元素. 列表的索引:第一个元素索引为0,最后一个元素索 ...

  5. Vue使用animate.js

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 【转】encodeURI和decodeURI方法

    为什么要两次调用encodeURI来解决乱码问题 https://blog.csdn.net/howlaa/article/details/12834595 请注意 encodeURIComponen ...

  7. thinkphp读取器和修改器

    读取器 如果在模型中,自定义了方法,那么读取器会读取模型中自定义的方法,否则会调用默认的方法. 写入器

  8. JVM基础——面试、笔试

    1.java内存与内存溢出 1.1 JVM分为哪些区,每一个区干嘛的?(见java虚拟机38页) (1)程序计数器(线程私有) 当前线程执行字节码的信号指示器.(每个线程都会在程序计数器中存储其指令, ...

  9. 6. ClustrixDB 备份恢复

    ClustrixDB备份恢复:   一.传统MySQL的备份/恢复 shell> mysqldump -u user -h clustrix host --single-transaction ...

  10. 分组统计 over(partition by

    sum( CASE WHEN ISNULL(b.zl, 0) = 0 THEN C.LLZL ELSE b.zl END * c.pccd * b.sl) over(partition by b.dj ...