Description

  一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过N-1次打架之后,整个森林的小猴都会成为好朋友。 现在的问题是,总共有多少种不同的打架过程。 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程。

Input

  一个整数N。

Output

  一行,方案数mod 9999991。

Sample Input

4

Sample Output

96

HINT

  50%的数据N<=10^3。
  100%的数据N<=10^6。

Source

Solution

  $n$个点组成的无根树的情况有$n^{n-2}$个(对~就是这一条,我两个月后才知道为啥)

  这部分可以通过$prufer$编码证明,因为该编码的$n-2$个位置里可以放$n$个数中的任意一个,不知道$prufer$的戳这

  还有打架的顺序有$(n-1)!$中,乘法原理。。。

 #include <bits/stdc++.h>
using namespace std;
const int MOD = ;
int main()
{
int n;
long long ans = ;
cin >> n;
for(int i = ; i <= n - ; i++)
ans = ans * n % MOD;
for(int i = ; i <= n - ; i++)
ans = ans * i % MOD;
cout << ans << endl;
return ;
}

[BZOJ1430] 小猴打架 (prufer编码)的更多相关文章

  1. bzoj 1430: 小猴打架 -- prufer编码

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...

  2. BZOJ1430小猴打架——prufer序列

    题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架 的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会 ...

  3. luogu P4430 小猴打架(prufer编码与Cayley定理)

    题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...

  4. bzoj1430 小猴打架 prufer 序列

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1430 题解 prufer 序列模板题. 一个由 \(n\) 个点构成的有标号无根树的个数为 \ ...

  5. bzoj1430: 小猴打架(prufer序列)

    1430: 小猴打架 题目:传送门 简要题意: n只互不相识的猴子打架,打架之后就两两之间连边(表示已经相互认识),只有不认识(朋友的朋友都是朋友)的两只猴子才会打架.最后所有的猴子都会连成一棵树,也 ...

  6. bzoj 1430 小猴打架 prufer 性质

    小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 709  Solved: 512[Submit][Status][Discuss] Descri ...

  7. [bzoj1430]小猴打架_prufer序列

    小猴打架 bzoj-1430 题目大意:题目链接. 注释:略. 想法: 我们发现打架的情况就是一棵树. 我们只需要把确定树的形态然后乘以$(n-1)!$表示生成这棵树时边的顺序. 一共$n$个节点我们 ...

  8. BZOJ1430: 小猴打架

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 328  Solved: 234[Submit][Status] Descripti ...

  9. 【prufer编码】BZOJ1430 小猴打架

    Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森 ...

随机推荐

  1. PHP 批量获取指定目录下的文件列表(递归,穿透所有子目录)

    //调用 $dir = '/Users/xxx/www'; $exceptFolders = array('view','test'); $exceptFiles = array('BaseContr ...

  2. Mysql(一):初识数据库

    一 数据库管理软件的由来 基于我们之前所学,数据要想永久保存,都是保存于文件中,毫无疑问,一个文件仅仅只能存在于某一台机器上. 如果我们暂且忽略直接基于文件来存取数据的效率问题,并且假设程序所有的组件 ...

  3. python2 => python3 踩坑集合

    报错内容: ModuleNotFoundError: No module named 'md5' 解析: 这是 python2 的库,python3 已经把它包含进 hashlib 库里了 解决方法 ...

  4. 关于Devexpress15.2中GridControl控件选择字段ColumnEdit下拉时间设置

    效果:点击表格GridControl控件中的列,可以显示日期和时间.时间可以手动修改.(绑定日期格式的字段) 设置步骤:1.点击时间字段列表设置ColumnEdit-New-选择DateEdit出现r ...

  5. UVA - 1631 Locker 记忆化搜索

    题意:给定两个密码串,每次可以让1~3个相邻的密码向上或者向下滚动,每个密码是 ,问最少需要多少次滚动可以让原串成为目标串? 思路:假设当前要让第i位密码还原,我们可以同时转动,不同的转动方式会影响后 ...

  6. hdu 2553 N皇后

    这题要打表,不然超时. AC代码 #include<cstdio> #include<cstring> int n,cnt; int vis[3][20]; int ans[1 ...

  7. MongoDB,子查询

    //1.从sub(订单明细)对订单号分组,查询最多子订单的单号一条数据,重命名orderNo字段为num//2.根据这个sub.num(从结果集里获取第一条结果),查询main(主档表) db.mai ...

  8. 【视频编解码·学习笔记】8. 熵编码算法:基本算法列举 & 指数哥伦布编码

    一.H.264中的熵编码基本方法: 熵编码具有消除数据之间统计冗余的功能,在编码端作为最后一道工序,将语法元素写入输出码流 熵解码作为解码过程的第一步,将码流解析出语法元素供后续步骤重建图像使用 在H ...

  9. Linux socket网络编程基础 tcp和udp

    Socket TCP网络通信编程 首先,服务器端需要做以下准备工作: (1)调用socket()函数.建立socket对象,指定通信协议. (2)调用bind()函数.将创建的socket对象与当前主 ...

  10. javascript类型判断方法

    判断javascript中的类型,共有四种常用的方法 var a=6; var b="str"; var c=true; var arr=[]; typeof 用于基本类型的判断 ...