09 使用Tensorboard查看训练过程
打开Python Shell,执行以下代码:
import tensorflow as tf
import numpy as np #输入数据
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0,0.05, x_data.shape)
y_data = np.square(x_data)-0.5+noise #输入层
with tf.name_scope('input_layer'): #输入层。将这两个变量放到input_layer作用域下,tensorboard会把他们放在一个图形里面
xs = tf.placeholder(tf.float32, [None, 1], name = 'x_input') # xs起名x_input,会在图形上显示
ys = tf.placeholder(tf.float32, [None, 1], name = 'y_input') # ys起名y_input,会在图形上显示 #隐层
with tf.name_scope('hidden_layer'): #隐层。将隐层权重、偏置、净输入放在一起
with tf.name_scope('weight'): #权重
W1 = tf.Variable(tf.random_normal([1,10]))
tf.summary.histogram('hidden_layer/weight', W1)
with tf.name_scope('bias'): #偏置
b1 = tf.Variable(tf.zeros([1,10])+0.1)
tf.summary.histogram('hidden_layer/bias', b1)
with tf.name_scope('Wx_plus_b'): #净输入
Wx_plus_b1 = tf.matmul(xs,W1) + b1
tf.summary.histogram('hidden_layer/Wx_plus_b',Wx_plus_b1)
output1 = tf.nn.relu(Wx_plus_b1) #输出层
with tf.name_scope('output_layer'): #输出层。将输出层权重、偏置、净输入放在一起
with tf.name_scope('weight'): #权重
W2 = tf.Variable(tf.random_normal([10,1]))
tf.summary.histogram('output_layer/weight', W2)
with tf.name_scope('bias'): #偏置
b2 = tf.Variable(tf.zeros([1,1])+0.1)
tf.summary.histogram('output_layer/bias', b2)
with tf.name_scope('Wx_plus_b'): #净输入
Wx_plus_b2 = tf.matmul(output1,W2) + b2
tf.summary.histogram('output_layer/Wx_plus_b',Wx_plus_b2)
output2 = Wx_plus_b2 #损失
with tf.name_scope('loss'): #损失
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-output2),reduction_indices=[1]))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'): #训练过程
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #初始化
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
merged = tf.summary.merge_all() #将图形、训练过程等数据合并在一起
writer = tf.summary.FileWriter('logs',sess.graph) #将训练日志写入到logs文件夹下 #训练
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if(i%50==0): #每50次写一次日志
result = sess.run(merged,feed_dict={xs:x_data,ys:y_data}) #计算需要写入的日志数据
writer.add_summary(result,i) #将日志数据写入文件
执行上述代码,会在“当前路径/logs”目录下生成一个events.out.tfevents.{time}.{machine-name}的文件。在当前目录新建“查看训练过程.bat”,里面输入。
tensorboard --logdir=logs

执行上述bat文件,打开浏览器,输入地址:http://localhost:6006,就可以查看训练过程中的各种图形。



重要提示:请不要用中文命名目录,中文目录中看不到任何图形。这个问题困扰了我一周!!!
09 使用Tensorboard查看训练过程的更多相关文章
- 如何打开tensorboard观测训练过程
TensorBoard是TensorFlow下的一个可视化的工具,能够帮助研究者们可视化训练大规模神经网络过程中出现的复杂且不好理解的运算,展示训练过程中绘制的图像.网络结构等. 最近本人在学习这方面 ...
- CNN基础四:监测并控制训练过程的法宝——Keras回调函数和TensorBoard
训练模型时,很多事情一开始都无法预测.比如之前我们为了找出迭代多少轮才能得到最佳验证损失,可能会先迭代100次,迭代完成后画出运行结果,发现在中间就开始过拟合了,于是又重新开始训练. 类似的情况很多, ...
- 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...
- 人脸检测MTCNN的训练过程(PRO网络)
以下学习均由此:https://github.com/AITTSMD/MTCNN-Tensorflow 数据集 WIDER Face for face detection and Celeba for ...
- tensorboard实现训练的可视化
tensorboard是tensorflow自带的可视化工具 输入命令可以启动tensorboard服务. tensorboard --logdir=your log dir 通过浏览器localho ...
- 【猫狗数据集】利用tensorboard可视化训练和测试过程
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...
- TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是 ...
- tensorflow笔记:模型的保存与训练过程可视化
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...
- visdom可视化pytorch训练过程
一.前言 在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等.在Tensorflow中,最常使用的工具非Tensorboard莫属:在Pytorch中,也有 ...
随机推荐
- bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数
n>=m,所以就变成了求 ϕ(m!)∗n!/m! 而 ϕ(m!)=m!∗(p−1)/p...... p为m!的素因子,即为m内的所有素数,问题就转化为了求 n!∗(p−1)/p...... 只需 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- Android 画文字图
画图 private Bitmap getbitmap(String content) { Bitmap bitmap = Bitmap.createBitmap(400, 400, Bitmap.C ...
- 第十四章——循环神经网络(Recurrent Neural Networks)(第一部分)
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent ...
- Git----GitHub Desktop的入门及使用
1.git和GitHub的区别: 简单回答:球和球场的关系(知乎答案,觉得简单易懂) 详细介绍:git是一个版本控制工具 github是一个用git做版本控制的项目托管平台. 2.安装本地github ...
- #利用openCV裁脸
#利用openCV裁脸import cv2 def draw_rects(img, rects): for x, y, w, h in rects: cv2.rectangle(img, (x, y) ...
- Promise原理—一步一步实现一个Promise
promise特点 一个promise的当前状态只能是pending.fulfilled和rejected三种之一.状态改变只能是pending到fulfilled或者pending到rejected ...
- PoiDemo【Android将表单数据生成Word文档的方案之二(基于Poi4.0.0)】
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 使用Poi实现android中根据模板文件生成Word文档的功能.这里的模板文件是doc文件.如果模板文件是docx文件的话,请阅读 ...
- jdk源码阅读笔记-LinkedList
一.LinkedList概述 LinkedList的底层数据结构为双向链表结构,与ArrayList相同的是LinkedList也可以存储相同或null的元素.相对于ArrayList来说,Linke ...
- numpy C语言源代码调试(一)
近期学习numpy,希望了解numpy内部实现机制,尝试调试numpy的源代码,特别是其中的C语言源码. 在numpy的官方网站上,有numpy的开发人员手册: https://docs.scipy. ...