09 使用Tensorboard查看训练过程
打开Python Shell,执行以下代码:
import tensorflow as tf
import numpy as np #输入数据
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0,0.05, x_data.shape)
y_data = np.square(x_data)-0.5+noise #输入层
with tf.name_scope('input_layer'): #输入层。将这两个变量放到input_layer作用域下,tensorboard会把他们放在一个图形里面
xs = tf.placeholder(tf.float32, [None, 1], name = 'x_input') # xs起名x_input,会在图形上显示
ys = tf.placeholder(tf.float32, [None, 1], name = 'y_input') # ys起名y_input,会在图形上显示 #隐层
with tf.name_scope('hidden_layer'): #隐层。将隐层权重、偏置、净输入放在一起
with tf.name_scope('weight'): #权重
W1 = tf.Variable(tf.random_normal([1,10]))
tf.summary.histogram('hidden_layer/weight', W1)
with tf.name_scope('bias'): #偏置
b1 = tf.Variable(tf.zeros([1,10])+0.1)
tf.summary.histogram('hidden_layer/bias', b1)
with tf.name_scope('Wx_plus_b'): #净输入
Wx_plus_b1 = tf.matmul(xs,W1) + b1
tf.summary.histogram('hidden_layer/Wx_plus_b',Wx_plus_b1)
output1 = tf.nn.relu(Wx_plus_b1) #输出层
with tf.name_scope('output_layer'): #输出层。将输出层权重、偏置、净输入放在一起
with tf.name_scope('weight'): #权重
W2 = tf.Variable(tf.random_normal([10,1]))
tf.summary.histogram('output_layer/weight', W2)
with tf.name_scope('bias'): #偏置
b2 = tf.Variable(tf.zeros([1,1])+0.1)
tf.summary.histogram('output_layer/bias', b2)
with tf.name_scope('Wx_plus_b'): #净输入
Wx_plus_b2 = tf.matmul(output1,W2) + b2
tf.summary.histogram('output_layer/Wx_plus_b',Wx_plus_b2)
output2 = Wx_plus_b2 #损失
with tf.name_scope('loss'): #损失
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-output2),reduction_indices=[1]))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'): #训练过程
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #初始化
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
merged = tf.summary.merge_all() #将图形、训练过程等数据合并在一起
writer = tf.summary.FileWriter('logs',sess.graph) #将训练日志写入到logs文件夹下 #训练
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if(i%50==0): #每50次写一次日志
result = sess.run(merged,feed_dict={xs:x_data,ys:y_data}) #计算需要写入的日志数据
writer.add_summary(result,i) #将日志数据写入文件
执行上述代码,会在“当前路径/logs”目录下生成一个events.out.tfevents.{time}.{machine-name}的文件。在当前目录新建“查看训练过程.bat”,里面输入。
tensorboard --logdir=logs

执行上述bat文件,打开浏览器,输入地址:http://localhost:6006,就可以查看训练过程中的各种图形。



重要提示:请不要用中文命名目录,中文目录中看不到任何图形。这个问题困扰了我一周!!!
09 使用Tensorboard查看训练过程的更多相关文章
- 如何打开tensorboard观测训练过程
TensorBoard是TensorFlow下的一个可视化的工具,能够帮助研究者们可视化训练大规模神经网络过程中出现的复杂且不好理解的运算,展示训练过程中绘制的图像.网络结构等. 最近本人在学习这方面 ...
- CNN基础四:监测并控制训练过程的法宝——Keras回调函数和TensorBoard
训练模型时,很多事情一开始都无法预测.比如之前我们为了找出迭代多少轮才能得到最佳验证损失,可能会先迭代100次,迭代完成后画出运行结果,发现在中间就开始过拟合了,于是又重新开始训练. 类似的情况很多, ...
- 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用
#训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...
- 人脸检测MTCNN的训练过程(PRO网络)
以下学习均由此:https://github.com/AITTSMD/MTCNN-Tensorflow 数据集 WIDER Face for face detection and Celeba for ...
- tensorboard实现训练的可视化
tensorboard是tensorflow自带的可视化工具 输入命令可以启动tensorboard服务. tensorboard --logdir=your log dir 通过浏览器localho ...
- 【猫狗数据集】利用tensorboard可视化训练和测试过程
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 创建数据集:https://www.cnblogs.com/xi ...
- TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是 ...
- tensorflow笔记:模型的保存与训练过程可视化
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...
- visdom可视化pytorch训练过程
一.前言 在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等.在Tensorflow中,最常使用的工具非Tensorboard莫属:在Pytorch中,也有 ...
随机推荐
- Java多线程简介
Java多线程简介 Java中内置了对多线程的支持,让多线程的开发方便很多,但同时也带来了另外的复杂,线程间的交互以及很多的不确定性让多线程又显得很复杂.在此只是针对Java中多线程的基础做些说明,有 ...
- 三元运算符 与 return
有三元运算符可以很好的代替if else简单语句 但是在使用的时候发现 与 return使用的时候 需要用这种形式 错误形式: $a ? return 1 ? return 0; 正确形式: retu ...
- javascript && php &&java 轰炸!!!
java && javascript && php 轰炸!!!恢复 1.javascript简介 *是基于对象和时间的驱动语言,应用于客户端. -----基于对象: * ...
- java泛型中使用的排序算法——归并排序及分析
一.引言 我们知道,java中泛型排序使用归并排序或TimSort.归并排序以O(NlogN)最坏时间运行,下面我们分析归并排序过程及分析证明时间复杂度:也会简述为什么java选择归并排序作为泛型的排 ...
- 客户端热更新框架之UI热更框架设计(上)
什么是热更新,为什么需要热更新? 热更新是目前各大手游等众多App常用的更新方式.简单来说就是在用户通过App Store下载App之后,打开App时遇到的即时更新.对于手游客户端来 ...
- LeetCode算法题-Unique Morse Code Words(Java实现)
这是悦乐书的第318次更新,第339篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第186题(顺位题号是804).国际莫尔斯电码定义了一种标准编码,其中每个字母映射到一系 ...
- 深入学习Redis(2):持久化
前言 在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关的知识——持久化.复制(及读写分离).哨兵.以及集群. 本文将先说明上述几种技术分别解决了Redis高可 ...
- [区块链] 密码学——Merkle 树
在计算机领域,Merkle树大多用来进行完整性验证处理.在处理完整性验证的应用场景中,特别是在分布式环境下进行这样的验证时,Merkle树会大大减少数据的传输量以及计算的复杂度. Merkle哈希树是 ...
- Centos 配置开机启动脚本启动 docker 容器
Centos 配置开机启动脚本启动 docker 容器 Intro 我们的 Centos 服务器上部署了好多个 docker 容器,因故重启的时候就会导致还得手动去手动重启这些 docker 容器,为 ...
- 【技术讨论】RF环境搭建手册
(原创文章,转载请注明出处.) 简要整理下环境搭建的步骤,以便快速.准确的搭建测试环境. 一.环境搭建 一.Python 2.7 1. 不要用Python3.6,很多库3.6中还没有,wxPython ...