【Kruskal+dfs】BZOJ1016- [JSOI2008]最小生成树计数
【题目大意】
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。
【思路】
拖欠了三个月整(?)的题目,搞出来弄掉了……本年度写的时候姿势最丑的程序,完全不知道自己在搞些什么,晕乎乎的,算了。
首先,MST具有以下性质:
1.对于同一张无向加权图G,它的最小生成树中长度为L的边长度一定。
2.MST用Kruskal做,处理完长度<=x,此时图的连通性是确定的。
我其实没有读懂第二句话是什么意思,总之大概理解一下,然后乱搞!怎么搞呢。
先按照普通的Kruskal,按照边长排序,然后排序,然后记录下排序为i的长度有几条边numss,下标为nstart到nend。然后弄出一组MST的解。这个不需要单独搞,只需要在记录边的条数的时候一边操作一边进行Kruskal(详细见程序)。
注意一下做完之后有可能进行合并操作的次数,也就是选的边是小于N-1的,也就是没有生成树,特判一下。
接着dfs,枚举每条边取numss个。由于题目条件相同长度的边至多10个,只需暴搜索2^10。每次就判断一下当前这条边左右两边是否已经在同一个并查集里面了,如果不在就可以尝试取这条边合并两段,dfs;或者这条边不取,直接dfs下去。
嗯,然后乘法原理就好了!
什么乱七八糟的题解……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define mod 31011
using namespace std;
const int MAXN=+;
struct node
{
int fr,to,len;
bool operator < (const node &x) const
{
return len<x.len;
}
}edge[MAXN];
int num[MAXN],numss=-,nstart[MAXN],nend[MAXN];//num[i]长度排序为i的边长需要取多少个,nstart/nend表示长度排序为i的边长排序为几到几
int n,m,pa[MAXN],tot=,ans,tmpans;
int find(int x){return (pa[x]==x?x:find(pa[x]));} void dfs(int now,int r,int total,int num)
{
if (num>total) return;
if (now>r)
{
if (num==total) tmpans++;
return;
}
int u=edge[now].fr,v=edge[now].to;
int fa=find(u),fb=find(v);
if (fa!=fb)
{
pa[fa]=fb;
dfs(now+,r,total,num+);
pa[fa]=fa;
}
dfs(now+,r,total,num);
} void init()
{
scanf("%d%d",&n,&m);
for (int i=;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
edge[i]=(node){a,b,c};
}
sort(edge,edge+m);
} void kruskal()
{
memset(num,,sizeof(num));
for (int i=;i<=n;i++) pa[i]=i;
for (int i=;i<m;i++)
{
if (i== || edge[i].len!=edge[i-].len)
{
if (i!=) nend[numss]=i-;
nstart[++numss]=i;
}
int fa=find(edge[i].fr),fb=find(edge[i].to);
if (fa!=fb)
{
pa[fa]=fb;
num[numss]++;
tot++;
}
}
nend[numss]=m-;
} void solve()
{
if (tot<n-) puts("");
else
{
ans=;
for (int i=;i<=n;i++) pa[i]=i;
for (int i=;i<=numss;i++)
{
tmpans=;
dfs(nstart[i],nend[i],num[i],);
ans=(ans*tmpans)%mod;
for (int j=nstart[i];j<=nend[i];j++)
{
int u=edge[j].fr,v=edge[j].to;
int fa=find(u),fb=find(v);
if (fa!=fb) pa[fa]=fb;
}
}
printf("%d",ans);
}
} int main()
{
freopen("bzoj_1016.in","r",stdin);
freopen("bzoj_1016.out","w",stdout);
init();
kruskal();
solve();
return ;
}
【Kruskal+dfs】BZOJ1016- [JSOI2008]最小生成树计数的更多相关文章
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
一直以为这题要martix-tree,实际上因为有相同权值的边不大于10条于是dfs就好了... 先用kruskal求出每种权值的边要选的次数num,然后对于每种权值的边2^num暴搜一下选择的情况算 ...
- [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...
- 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数
题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...
- [BZOJ1016][JSOI2008]最小生成树计数(结论题)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...
随机推荐
- Double类型的数据四舍五入保留小数点后两位
4种方法,都是四舍五入,例: import java.math.BigDecimal; import java.text.DecimalFormat; import java.text.NumberF ...
- $.on方法与$.click()的区别
1.$.on("click") 支持动态元素绑定事件,该事件是绑定到document上,只要符合条件的元素即可绑定事件,同时$.on()可以绑定多个事件 on方法 on(event ...
- 分类算法:决策树(C4.5)(转)
C4.5是机器学习算法中的另一个分类决策树算法,它是基于ID3算法进行改进后的一种重要算法,相比于ID3算法,改进有如下几个要点: 1)用信息增益率来选择属性.ID3选择属性用的是子树的信息增益,这里 ...
- Python模块学习 - ConfigParser
配置文件 很多软件都用到了配置文件,像git运行的时候会读取~/gitconfig,MySQL运行的时候会读取/etc/my.cnf,Python 提供的包管理工具pip命令,也会去读取~/.pip/ ...
- tornado简单使用
这篇适用于快速上手想了解更深:http://www.tornadoweb.cn/ https://tornado-zh.readthedocs.io/zh/latest/ Tornado 是 Fr ...
- Which cryptsetup
Which cryptsetup Rpm –qf ‘which cryptsetup’ 安装加密工具: 设置加密分区 Crptsetup luksFormat Echo –n “xuegod123” ...
- pinctrl框架【转】
转自:http://www.cnblogs.com/kevinhwang/p/5703192.html pinctrl框架是linux系统为统一各SOC厂家pin管理,目的是为了减少SOC厂家系统移植 ...
- java===字符串常用API介绍(转)
本文转自:http://blog.csdn.net/crazy_kid_hnf/article/details/55102861 字符串基本操作 1.substring(from,end)(含头不含尾 ...
- 使用cmd(黑窗口)敲命令使用远程数据库
C:\Users\gzz>mysql -h 10.27.104.176 -u root -p mysql
- LCT 文档
file:///C:/Users/Frank/Downloads/QTREE%E8%A7%A3%E6%B3%95%E7%9A%84%E4%B8%80%E4%BA%9B%E7%A0%94%E7%A9%B ...