1176: [Balkan2007]Mokia

Time Limit: 30 Sec  Memory Limit: 162 MB
Submit: 3134  Solved: 1395
[Submit][Status][Discuss]

Description

维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000.

Input

第一行两个整数,S,W;其中S为矩阵初始值;W为矩阵大小

接下来每行为一下三种输入之一(不包含引号):

"1 x y a"

"2 x1 y1 x2 y2"

"3"

输入1:你需要把(x,y)(第x行第y列)的格子权值增加a

输入2:你需要求出以左下角为(x1,y1),右上角为(x2,y2)的矩阵内所有格子的权值和,并输出

输入3:表示输入结束

Output

对于每个输入2,输出一行,即输入2的答案

Sample Input

0 4
1 2 3 3
2 1 1 3 3
1 2 2 2
2 2 2 3 4
3

Sample Output

3
5

HINT

保证答案不会超过int范围

Source

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define maxq 800000
#define ll long long
using namespace std;
struct data {ll id,x,y,tp,f,a,p;}t[maxq],tmp[maxq];
ll s,w;
ll ans[maxq];
int cnt;
bool cmp1(data t1,data t2) {return t1.x==t2.x?t1.id<t2.id:t1.x<t2.x;}
int ask;
ll sum[];
int lowbit(int x) {return x&(-x);}
bool vis[maxq];
void insert(int x,ll ad) {for(int i=x;i<=w;i+=lowbit(i)) sum[i]+=ad;}
ll query(int x) {
ll re=;
for(int i=x;i;i-=lowbit(i)) re+=sum[i];
return re;
}
void cdq(int l,int r) {
if(l==r) return;
int mid=l+r>>;
int lp=l,rp=mid+;
for(int i=l;i<=r;i++) {
if(t[i].tp==) {
if(t[i].id>mid){ans[t[i].p]+=t[i].f*query(t[i].y);vis[t[i].p]=;}
}
else {if(t[i].id<=mid) insert(t[i].y,t[i].a);}
}
for(int i=l;i<=r;i++) if(t[i].tp==&&t[i].id<=mid) insert(t[i].y,-t[i].a);
for(int i=l;i<=r;i++) {
if(t[i].id<=mid) tmp[lp++]=t[i];
else tmp[rp++]=t[i];
}
for(int i=l;i<=r;i++) t[i]=tmp[i];
cdq(l,mid);cdq(mid+,r);
}
void add(ll x1,ll y1,ll id,ll tp,ll f) {t[cnt].p=id;t[cnt].f=f;t[cnt].tp=tp;t[cnt].x=x1;t[cnt].y=y1;t[cnt].id=cnt;}
int main() {
scanf("%lld%lld",&s,&w);
int tp;
while(scanf("%d",&tp)) {
ask++;
if(tp==) break;
if(tp==) {cnt++;scanf("%lld%lld%lld",&t[cnt].x,&t[cnt].y,&t[cnt].a);t[cnt].id=cnt;t[cnt].tp=;}
else {
ll x1,y1,x2,y2;
scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);
cnt++;add(x1-,y1-,ask,,);cnt++;add(x2,y2,ask,,);
cnt++;add(x1-,y2,ask,,-);cnt++;add(x2,y1-,ask,,-);
ans[ask]+=(y2-y1+)*(x2-x1+)*s;
}
}
sort(t+,t+cnt+,cmp1);
cdq(,cnt);
for(int i=;i<=ask;i++) if(vis[i]) printf("%lld\n",ans[i]);
}

[BZOJ1176][Balkan2007]Mokia cdq+树状数组的更多相关文章

  1. BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组

    BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组 Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加 ...

  2. bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组

    [bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...

  3. BZOJ 1176/2683 Mokia (三维偏序CDQ+树状数组)

    题目大意: 洛谷传送门 三维偏序裸题.. 每次操作都看成一个三元组$<x,y,t>$,表示$x,y$坐标和操作时间$t $ 询问操作拆成$4$个容斥 接下来就是$CDQ$了,外层按t排序, ...

  4. bzoj3262: 陌上花开(CDQ+树状数组处理三维偏序问题)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3262 题目大意:中文题目 具体思路:CDQ可以处理的问题,一共有三维空间,对于第一维我们 ...

  5. bzoj 3295 动态逆序对 (三维偏序,CDQ+树状数组)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3295 思路: 可以将这道题看成倒着插入,这样就可以转化成求逆序对数,用CDQ分治降维,正反用 ...

  6. bzoj3262陌上花开 三维数点 cdq+树状数组

    大早上的做了一道三维数点一道五位数点,神清气爽! 先给一维排序,变成一个奇怪的动态的二维数点(相当于有一个扫描面扫过去,导致一系列的加点和询问) 然后cdq分治,再变回静态,考虑前半段对后半段的影响 ...

  7. BZOJ 2716/2648 SJY摆棋子 (三维偏序CDQ+树状数组)

    题目大意: 洛谷传送门 这明明是一道KD-Tree,CDQ分治是TLE的做法 化简式子,$|x1-x2|-|y1-y2|=(x1+y1)-(x2+y2)$ 而$CDQ$分治只能解决$x1 \leq x ...

  8. BZOJ 2141 排队 (三维偏序CDQ+树状数组)

    题目大意:略 洛谷传送门 和 [CQOI2015]动态逆序对 这道题一样的思路 一开始的序列视为$n$次插入操作 把每次交换操作看成四次操作,删除$x$,删除$y$,加入$x$,加入$y$ 把每次操作 ...

  9. BZOJ 3295 [CQOI2011]动态逆序对 (三维偏序CDQ+树状数组)

    题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数 ...

随机推荐

  1. JDK源码分析 – Integer

    Integer类的申明 public final class Integer extends Number implements Comparable<Integer> { … } Int ...

  2. js+jquery 常用选择器函数

    一.获取当前标签 JS: this,如下: <button onclick="fun(this)"></button> Jquery,如下: $(" ...

  3. 设置select和option的文字居中的方法

    给select设置text-align:center在火狐浏览器下ok,但是在chrome浏览器无效,然后option在两个浏览器下设置text-align:center都是无效的,解决方法,设置样式 ...

  4. Codeforces Round #390 (Div. 2) E(bitset优化)

    题意就是一个给出2个字符矩阵,然后进行匹配,输出每个位置的匹配的结果 (超出的部分循环处理) 一种做法是使用fft,比较难写,所以没有写 这里使用一个暴力的做法,考虑到一共只出现26个字符 所以使用一 ...

  5. SPOJ Repeats(后缀数组+RMQ-ST)

    REPEATS - Repeats no tags  A string s is called an (k,l)-repeat if s is obtained by concatenating k& ...

  6. JSR330的注解和spring的原生注解的比较

    下面的图比较了JSR330和spring的原生注解.其实在大多数场合下他们之间可以互相代替.有可能spring写注解时参考了JSR330的注解:

  7. vue与node模版引擎的渲染标记{{}}(双花括号)冲突

    由于之前练习koa2,直接渲染的jquery写的传统页面. 这次想偷懒,直接script引入vue,发现渲染不出data值. 渲染引擎用得是xtpl, 找了半天没有发现可以修改xtpl渲染分隔符的配置 ...

  8. 浅析 nth-child(n) 和 nth-of-type(n)

    首先看一个例子 <div> <p>第一个段落</p> <p>第二个段落</p> </div> p:nth-child(2) { ...

  9. Xamarin+vs2010部署错误:error MSB6004: 指定的任务可执行文件位置\sdk\\tools\zipalign.exe”无效

    好不容易配好了Xamarin和vs2010,也搞好了GenyMotion的虚拟机配置,开始调试的时候又报出了这样的错误: error MSB6004: 指定的任务可执行文件位置"C:\Use ...

  10. lucene、solr、nutch三者的关系

    lucene是一个做搜索用的类库. nutch和solr都是基于lucene的,二者都是可直接运行的应用程序: 直接在业务上使用lucene的倒是不太多见. solr主要提供了建立索引(用户可以直接p ...