题目大意:给一个集合$S$($1\leq S_i\leq 70$),选择一个非空子集,使它们的乘积等于某个整数的平方的方法的数量。 求方案数,若两种方法选择的元素的索引不同,则认为是不同的方法。

题解:$70$以内的质数只有$19$个,考虑状压$DP$,$f_{i,j}$表示这个数为$i$,若$j$二进制下的第$k$位为$1$,表示它含第$k$个质数奇数个,转移显然

卡点:

C++ Code:

#include <cstdio>
#include <cstring>
#define maxn 500010
using namespace std;
const int mod = 1000000007;
const int plist[19] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67};
int n, a;
int cnt[71], now = 1, past;
long long f[2][1 << 19];
long long pw(long long base, long long p) {
if (p < 1) return 1;
long long ans = 1;
for (; p; p >>= 1, base = base * base % mod)
if (p & 1) ans = ans * base % mod;
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a);
cnt[a]++;
}
f[now][0] = 1;
for (int i = 1; i <= 70; i++) {
now ^= past ^= now ^= past;
if (cnt[i]) {
memset(f[now], 0, sizeof f[now]);
int cur = 0, Yx = i;
for (int j = 0; j < 19; j++) {
while (Yx % plist[j] == 0) {
Yx /= plist[j];
cur ^= 1 << j;
}
}
long long tmp = pw(2, cnt[i] - 1);
for (int j = 0; j < 1 << 19; j++) {
f[now][j] = (f[now][j] + f[past][j] * tmp) % mod;
f[now][j ^ cur] = (f[now][j ^ cur] + f[past][j] * tmp) % mod;
}
} else now ^= past ^= now ^= past;
}
printf("%lld\n", (f[now][0] - 1 + mod) % mod);
return 0;
}

  

[CF895C]Square Subsets的更多相关文章

  1. CF895C: Square Subsets && 【BZOJ2844】albus就是要第一个出场

    CF895C: Square Subsets && [BZOJ2844]albus就是要第一个出场 这两道题很类似,都是线性基的计数问题,解题的核心思想也一样. CF895C Squa ...

  2. 洛谷CF895C Square Subsets(线性基)

    洛谷传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 题意: 给你n个数,每个数<=70,问有多少个集合,满足集合中所有数相乘是个完全平方数(空集除外) 题解: 完全看不出这玩意儿和线性基有什 ...

  3. CF895C Square Subsets (组合数+状压DP+简单数论)

    题目大意:给你一个序列,你可以在序列中任选一个子序列,求子序列每一项的积是一个平方数的方案数. 1<=a[i]<=70 因为任何一个大于2的数都可以表示成几个质数的幂的乘积 所以我们预处理 ...

  4. CF895C Square Subsets [线性基]

    线性基的题- 考虑平方数只和拆解质因子的个数的奇偶性有关系 比如说你 \(4\) 和 \(16\) 的贡献都是一样的.因为 \(4 = 2^2 , 16 = 2^4\) \(2\) 和 \(4\) 奇 ...

  5. Codeforces 895C - Square Subsets

    895C - Square Subsets 思路:状压dp. 每个数最大到70,1到70有19个质数,给这19个质数标号,与状态中的每一位对应. 状压:一个数含有这个质因子奇数个,那么他状态的这一位是 ...

  6. Codeforces Round #448 C. Square Subsets

    题目链接 Codeforces Round #448 C. Square Subsets 题解 质因数 *质因数 = 平方数,问题转化成求异或方程组解的个数 求出答案就是\(2^{自由元-1}\) , ...

  7. Codeforces 895.C Square Subsets

    C. Square Subsets time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...

  8. Codeforces 895C Square Subsets(状压DP 或 异或线性基)

    题目链接  Square Subsets 这是白书原题啊 先考虑状压DP的做法 $2$到$70$总共$19$个质数,所以考虑状态压缩. 因为数据范围是$70$,那么我们统计出$2$到$70$的每个数的 ...

  9. Codeforces 895C - Square Subsets 状压DP

    题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...

随机推荐

  1. Cacti 学习笔记

    Cacti是用php语言实现的一个软件,它的主要功能是用snmp服务获取数据,然后用rrdtool储存和更新数据,当用户需要查看数据的时候用rrdtool生成图表呈现给用户.因此,snmp和rrdto ...

  2. MySQL快速生成连续整数

    很多时候需要用到连续的id进行数据对比,如判断是否连续等问题.那么,生成连续整数的方式有多种,首先容易想到的是逐步循环,如果想生成1kw条记录,则需要循环1kw次进行插入,那么有没有其他方式呢,效率相 ...

  3. phpstudy apache启动失败,80端口占用问题解决方案

    安装phpstydy,启动apache时,启动失败,提示80端口占用,需要将占用80端口的服务进程关闭 1.运行cmd, netstat -ano 找到80端口对应的pid  4 2.一般都是调用 h ...

  4. 基于OMAPL:Linux3.3内核的编译

    基于OMAPL:Linux3.3内核的编译 OMAPL对应3个版本的linux源代码,分别是:Linux-3.3.Linux-2.6.37.Linux2.6.33,这里的差距在于Linux2,缺少SY ...

  5. iScroll实现下拉刷新上拉加载

    前言 初学iscroll这个控件,给我的一个感觉还是蛮不错的. 什么是iScroll:是目前最成熟的自定义滚动解决方案之一,在移动端和PC有很好的兼容性.iScroll官方提供了5个不同的版本 isc ...

  6. 最短路径问题 3.Bellman-Ford算法

    简要:Bellman-Ford算法计算的仍然是从一个点到其他所有点的最短路径算法,其时间复杂度是O(NE),N表示点数,E表示边数,不难看出,当一个图稍微稠密一点,边的数量会超过点数那么实际上效率是低 ...

  7. 线程基础三 使用C#中的lock关键词

    C#中lock关键字主要是为确保当一个线程使用某些资源时,同时无法其他线程无法使用该资源.下面我们看看下面的小例子. static void Main(string[] args) { var c = ...

  8. ASP.NET MVC文件上传【转】

    最近用到了文件上传功能,下面给出ASP.NET MVC文件上传的一个简单示例: 一.前端代码 @using (Html.BeginForm("UploadFile", " ...

  9. java基础 -- Collections.sort的两种用法

    /** * @author * @version * 类说明 */ package com.jabberchina.test; import java.util.ArrayList; import j ...

  10. 【APUE】Chapter16 Network IPC: Sockets & makefile写法学习

    16.1 Introduction Chapter15讲的是同一个machine之间不同进程的通信,这一章内容是不同machine之间通过network通信,切入点是socket. 16.2 Sock ...