[BZOJ1022][SHOI2008]小约翰的游戏
sol
显然这个玩意儿和普通\(Nim\)游戏是有区别的。
形式化的,\(Nim\)游戏的关键在于决策集合为空者负,而这里的决策集合为空者胜。
所以就显然不能直接用\(SG\)函数的那套理论。
这种“决策集合为空者胜”的博弈游戏被称为\(Anti-SG\)游戏。
有一个\(SJ\)定理是这样的:
对于一个\(Anti-SG\)游戏,如果我们规定当局面中所有的单一游戏的\(SG\)值为\(0\)时游戏结束,则先手必胜当且仅当满足下列条件之一:
游戏的\(SG\)值不为零且游戏中某个单一游戏的\(SG\)值大于一。
游戏的\(SG\)值为零且游戏中不存在某个单一游戏的\(SG\)值大于一。
放到这题中,因为石子可以被任意数量拿取,所以\(SG\)值就等于石子数量。根据\(SJ\)定理,小约翰必胜的条件就是:
所有石子异或和不为零且存在一堆石子个数大于一;
所有石子异或和为零且不存在某一堆石子个数大于一。
code
#include<cstdio>
#include<algorithm>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int main()
{
int T=gi();
while (T--)
{
int n=gi(),Max=0,Sum=0;
for (int i=1,x;i<=n;++i)
x=gi(),Max=max(Max,x),Sum^=x;
puts((Sum&&Max>1)||(!Sum&&Max<=1)?"John":"Brother");
}
return 0;
}
[BZOJ1022][SHOI2008]小约翰的游戏的更多相关文章
- bzoj千题计划112:bzoj1022: [SHOI2008]小约翰的游戏John
http://www.lydsy.com/JudgeOnline/problem.php?id=1022 http://www.cnblogs.com/TheRoadToTheGold/p/67448 ...
- BZOJ1022 [SHOI2008]小约翰的游戏John 【博弈论】
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3014 Solved: 1914 [Submi ...
- [Bzoj1022][SHOI2008]小约翰的游戏John(博弈论)
1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2976 Solved: 1894[Submit] ...
- bzoj1022: [SHOI2008]小约翰的游戏John(博弈SG-nim游戏)
1022: [SHOI2008]小约翰的游戏John 题目:传送门 题目大意: 一道反nim游戏,即给出n堆石子,每次可以取完任意一堆或一堆中的若干个(至少取1),最后一个取的LOSE 题解: 一道 ...
- BZOJ1022 [SHOI2008]小约翰的游戏John
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取 的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不 ...
- [BZOJ1022] [SHOI2008] 小约翰的游戏John (SJ定理)
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...
- BZOJ1022[SHOI2008]小约翰的游戏——anti-SG(反尼姆博弈)
题目描述 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取,我们规定取到 ...
- BZOJ1022:[SHOI2008]小约翰的游戏John(博弈论)
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...
- [bzoj1022][SHOI2008]小约翰的游戏 John (博弈论)
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...
随机推荐
- try catch 事务不会滚
在spring机制中,在配置事务后,如果采用try catch 捕获异常后,因为异常已经被捕获,所以事务不会滚,从而产生许多脏数据.解决办法: 1.在catch中抛出异常,(throw new Run ...
- 前端之JQuery [续]
JQuery使用技巧 1.prop属性实现全选,反选,取消功能 需求: 实现全选,反选,取消功能 代码如下: <!DOCTYPE html> <html lang="en& ...
- 如何成为专业的PHP开发者
如何才能成为一名专业的PHP开发者?资深Web开发者Bruno Skvorc在其博客上分享了一些心得. 当阅读各种和PHP相关的博客.Quora问题.Google+社区.资讯和杂志的时候,Bruno ...
- 【转】Linux rpm 安装卸载操作
rpm 是红帽(RedHat)软件包管理工具,实现类似于 Windows 中的添加/删除程序功能.下面,就来向大家介绍 rpm 命令的用法. 1. 安装rpm包: rpm -ivh 软件包名 安装软件 ...
- iOS Healthkit 使用探索分析 🌛
一 基本认知层面: HealthKit框架提供了一个结构,应用可以使用它来分享健康和健身数据.HealthKit管理从不同来源获得的数据,并根据用户的偏好设置,自动将不同来源的所有数据合并起来.应用还 ...
- Oracle常用的OCI函数
一. Oracle oci工具包安装: $ORACLE_HOME\BIN:执行文件和help文件 $ORACLE_HOME\OCI\INCLUDE:头文件 $ORACLE_HOME\OCI\LIB\B ...
- Js 类型方面的神坑
你有没有遇见过本来好好的一个数组结果 typeof 出来是个 object 的情况,你有没有遇到过非要写个 typeof x === "undefined" 判断未赋值的情况... ...
- point-to-point(点对点) 网口
点对点连接是两个系统或进程之间的专用通信链路.想象一下直接连接两个系统的一条线路.两个系统独占此线路进行通信.点对点通信的对立面是广播,在广播通信中,一个系统可以向多个系统传输. 点对点通信在OSI协 ...
- 跨平台移动开发_Windows 8平台使用 PhoneGap 方法
原文地址: Using PhoneGap in Windows 8 Store Applications 下载phonegap 2.9.1 下载地址: https://codeload.github. ...
- php数组函数-array_merge()
array_merge()函数把两个或多个数组合并为一个数组. 如果键名有重复,该键的键值为最后一个键名对应的值.如果数组是数字 索引,则键名会以连续方式重新索引. 注:如果仅仅向array_merg ...