Description

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。
Input

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s
Output

每次的方法数
Sample Input
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
Sample Output
4
27
数据规模
di,s<=100000
tot<=1000

每一次都做一次多重背包跟定是不行的,这个先预处理一下,然后可以用容斥原理O(1)回答

我们可以这样用容斥,先算出没有限制钱币数量的方案数,记为f[i],表示没有限制,总价值为i的方案数,然后减去至少一种钱币超过限制的方案数,加上至少两种钱币超过限制的方案数,减去至少三种钱币超过限制的方案数,最后加上四种钱币都超过限制的方案数,第i种钱币超过限制就是第i种钱币至少用了di+1个(例:第1种钱币超过限制的方案数就是f[s-c[1]*(d1+1)])

犯了一个傻逼错误

求f[i]的时候我是这么求的

     for i:= to maxs do
for j:= to do
inc(f[i],fn(i-c[j]));

然后理所当然的爆了int64

为了不重复计算方案,所以应该以j为阶段(话说动态规划的阶段是什么早就忘了),就像这样

     for j:= to  do
for i:= to maxs do
inc(f[i],fn(i-c[j]));

吐槽:

R:容斥原理是什么?我们学过吗?

X:学过啊

R:额,这算学过吗,我只记得老师叫我们用容斥写在100以内是2,3,5的倍数的数有多少,然后要我们查公式,这TM有什么意思,这个题有必要做吗,换个例题不行啊

当时我就想啊,容斥这么垃圾(不要打我......),我就直接跳过了,没想到容斥原来用处挺大的啊(当时讲的那个例题毫无吸引力好吗)

 const
maxs=;
var
f:array[..maxs]of int64;
c:array[..]of longint;
n:longint;
ans:int64; function fn(x:longint):int64;
begin
if x>= then exit(f[x]);
exit();
end; procedure main;
var
i,j,d1,d2,d3,d4,s:longint;
begin
for i:= to do
read(c[i]);
f[]:=;
for j:= to do
for i:= to maxs do
inc(f[i],fn(i-c[j]));
read(n);
for i:= to n do
begin
read(d1,d2,d3,d4,s);
ans:=fn(s);
dec(ans,fn(s-c[]*(d1+)));
dec(ans,fn(s-c[]*(d2+)));
dec(ans,fn(s-c[]*(d3+)));
dec(ans,fn(s-c[]*(d4+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d2+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d4+)));
inc(ans,fn(s-c[]*(d2+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d2+)-c[]*(d4+)));
inc(ans,fn(s-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d2+)-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d3+)-c[]*(d4+)));
writeln(ans);
end;
end; begin
main;
end.

1042: [HAOI2008]硬币购物 - BZOJ的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. 【BZOJ】1042: [HAOI2008]硬币购物

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3307  Solved: 2075[Submit][Stat ...

  6. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  7. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  8. 【BZOJ】1042: [HAOI2008]硬币购物(dp+容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1042 一开始写了个O(nv)的背包,果断tle... 看了题解,,好神..用了组合数学中的多重集合方 ...

  9. BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)

    题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...

随机推荐

  1. JAVA网络编程常见问题

    一. 网络程序运行过程中的常见异常及处理 第1个异常是 java.net.BindException:Address already in use: JVM_Bind. 该异常发生在服务器端进行new ...

  2. CI加载流程小结

    无聊,决定水一把. CI(CodeIgniter)是我最早接触的一个框架,到现在也只是用了其中一点零碎的方法.一直想对其流程做个小结,却总是因各种各样的“理由”挨着.看见别人图表齐上阵,没那耐心,就从 ...

  3. MyBatis(3.2.3) - Cache

    Caching data that is loaded from the database is a common requirement for many applications to impro ...

  4. 和阿文一起学H5——音乐素材

    国内 1.网易云音乐 http://music.163.com/ 网易云音乐有听歌识曲功能,听几秒中可听出是什么歌. 微信摇一摇也有听歌识曲功能. 2.只要伴奏不要人声 http://5sing.ku ...

  5. C#程序员整理的Unity 3D笔记(十五):Unity 3D UI控件至尊–NGUI

    目前,UGUI问世不过半年(其随着Unity 4.6发布问世),而市面上商用的产品,UI控件的至尊为NGUI:影响力和广度(可搜索公司招聘Unity 3D,常常能看到对NGUI关键词). NGUI虽然 ...

  6. 【转载】绝对干货!Linux小白最佳实践:《超容易的Linux系统管理入门书》(连载九)如何通过源代码安装软件

    除了使用Linux的包管理机制进行软件的安装.更新和卸载,从源代码进行软件的安装也是非常常见的,开源软件提供了源代码包,开发者可以方便的通过源代码进行安装.从源码安装软件一般经过软件配置.编译软件.执 ...

  7. IPoint从自定义的投影坐标系转换到自定义的地理坐标系

    IPoint pointStart = new PointClass(); pointStart = xyPolyline.FromPoint; ISpatialReferenceFactory pS ...

  8. 暑假集训(4)第二弹 -----递推(hdu2254)

    题意概括:上次小A在你的帮助下成功炼成贤者法阵的第一部分——三角分隔,现在他准备绘制法阵的第二部分——莫测矩形. 而他又遇到了一个问题,他不知道不同矩形到底有多少个. 秉持帮人帮到底,送佛送到西的基本 ...

  9. UVaOJ 120 - Stacks of Flapjacks

    120 - Stacks of Flapjacks 题目看了半天......英语啊!!! 好久没做题...循环输入数字都搞了半天...罪过啊!!! 还是C方便一点...其实C++应该更方便的...C+ ...

  10. Java中的堆内存、栈内存、静态存储区

    一.栈 栈的优势是,存取速度比堆要快,仅次于直接位于CPU中的寄存器,当超过变量的作用域后,java会自动释放掉为该变量分配的内存空间,该内存空间可以立刻被另作他用.但缺点是,存在栈中的数据大小与生存 ...