Description

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。
Input

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s
Output

每次的方法数
Sample Input
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
Sample Output
4
27
数据规模
di,s<=100000
tot<=1000

每一次都做一次多重背包跟定是不行的,这个先预处理一下,然后可以用容斥原理O(1)回答

我们可以这样用容斥,先算出没有限制钱币数量的方案数,记为f[i],表示没有限制,总价值为i的方案数,然后减去至少一种钱币超过限制的方案数,加上至少两种钱币超过限制的方案数,减去至少三种钱币超过限制的方案数,最后加上四种钱币都超过限制的方案数,第i种钱币超过限制就是第i种钱币至少用了di+1个(例:第1种钱币超过限制的方案数就是f[s-c[1]*(d1+1)])

犯了一个傻逼错误

求f[i]的时候我是这么求的

     for i:= to maxs do
for j:= to do
inc(f[i],fn(i-c[j]));

然后理所当然的爆了int64

为了不重复计算方案,所以应该以j为阶段(话说动态规划的阶段是什么早就忘了),就像这样

     for j:= to  do
for i:= to maxs do
inc(f[i],fn(i-c[j]));

吐槽:

R:容斥原理是什么?我们学过吗?

X:学过啊

R:额,这算学过吗,我只记得老师叫我们用容斥写在100以内是2,3,5的倍数的数有多少,然后要我们查公式,这TM有什么意思,这个题有必要做吗,换个例题不行啊

当时我就想啊,容斥这么垃圾(不要打我......),我就直接跳过了,没想到容斥原来用处挺大的啊(当时讲的那个例题毫无吸引力好吗)

 const
maxs=;
var
f:array[..maxs]of int64;
c:array[..]of longint;
n:longint;
ans:int64; function fn(x:longint):int64;
begin
if x>= then exit(f[x]);
exit();
end; procedure main;
var
i,j,d1,d2,d3,d4,s:longint;
begin
for i:= to do
read(c[i]);
f[]:=;
for j:= to do
for i:= to maxs do
inc(f[i],fn(i-c[j]));
read(n);
for i:= to n do
begin
read(d1,d2,d3,d4,s);
ans:=fn(s);
dec(ans,fn(s-c[]*(d1+)));
dec(ans,fn(s-c[]*(d2+)));
dec(ans,fn(s-c[]*(d3+)));
dec(ans,fn(s-c[]*(d4+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d2+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d4+)));
inc(ans,fn(s-c[]*(d2+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d2+)-c[]*(d4+)));
inc(ans,fn(s-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d2+)-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d3+)-c[]*(d4+)));
writeln(ans);
end;
end; begin
main;
end.

1042: [HAOI2008]硬币购物 - BZOJ的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. 【BZOJ】1042: [HAOI2008]硬币购物

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3307  Solved: 2075[Submit][Stat ...

  6. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  7. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  8. 【BZOJ】1042: [HAOI2008]硬币购物(dp+容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1042 一开始写了个O(nv)的背包,果断tle... 看了题解,,好神..用了组合数学中的多重集合方 ...

  9. BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)

    题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...

随机推荐

  1. jquery、js全选反选checkbox

    操作checkbox,全选反选 //全选 function checkAll() { $('input[name="TheID"]').attr("checked&quo ...

  2. 关于java的static关键字

    通常来说,当你创建类时,就是在描述那个类的对象的外观与行为.除非你用new创建那个类的对象,否则,你实际上并未获得任何东西.当你用new来创建对象时,数据存储空间才被分配,其方法才供外界调用. 但是有 ...

  3. React-Native的基本控件属性方法

    对React-Native的学习,从熟悉基本控件开始. View 属性方法 序号 名称 属性Or方法 类型 说明 1 accessibilityLabel 属性 string   2 accessib ...

  4. Android 快捷方式相关操作

    尽管现在少数手机不支持快捷方式,但是仍然有大部分手机是支持的.创建快捷方式,可以减少用户在应用列表繁多的应用程序中查找应用的时间,快速进入应用:或是应用中的某个功能使用频率较高,创建快捷方式,可以快速 ...

  5. JSP之初识

    JSP是“java server pages”的缩写,java是一种编程语言,jsp只是相当于java里面的servlet部分,所以JSP技术是以Java语言作为脚本语言的. JSP这门技术的最大的特 ...

  6. PC电脑运行Android模拟器总是弹出“视频源”窗体的原因和解决方案

    原因: PC电脑运行Android模拟器时弹出“视频源”窗体,会让你"选择视频设备",如:HP TruevIsion HD,而这个视频设备就是你电脑中的内置摄像头,这个内置摄像头在 ...

  7. 第三十六篇、webService

    在很多的情况下,我们会常常遇到webservive写的接口,往往这种情况下,我们就需要拼接一段报文去与服务器对接 首先要明白webService的工作原理,,,(http://www.cnblogs. ...

  8. ZStack中的编程技巧

    1. 像函数一样使用的宏 //这个宏,用来被其他宏使用,构造一个正确有效的表达式.这个适合于一些离散语句的组合,不适合函数的重新命名 #define st(x)      do { x } while ...

  9. Mysql创建函数时报错

    先去查询  show variables like '%func%' ; 这个语句,如果该语句最后输出的值是OFF 那么就用下面的语句去修改就可以:set global log_bin_trust_f ...

  10. [WinForm]为TextBox设置水印文字

    关键代码: using System; using System.Runtime.InteropServices; using System.Windows.Forms; namespace WinF ...