Description

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。
Input

第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s
Output

每次的方法数
Sample Input
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
Sample Output
4
27
数据规模
di,s<=100000
tot<=1000

每一次都做一次多重背包跟定是不行的,这个先预处理一下,然后可以用容斥原理O(1)回答

我们可以这样用容斥,先算出没有限制钱币数量的方案数,记为f[i],表示没有限制,总价值为i的方案数,然后减去至少一种钱币超过限制的方案数,加上至少两种钱币超过限制的方案数,减去至少三种钱币超过限制的方案数,最后加上四种钱币都超过限制的方案数,第i种钱币超过限制就是第i种钱币至少用了di+1个(例:第1种钱币超过限制的方案数就是f[s-c[1]*(d1+1)])

犯了一个傻逼错误

求f[i]的时候我是这么求的

     for i:= to maxs do
for j:= to do
inc(f[i],fn(i-c[j]));

然后理所当然的爆了int64

为了不重复计算方案,所以应该以j为阶段(话说动态规划的阶段是什么早就忘了),就像这样

     for j:= to  do
for i:= to maxs do
inc(f[i],fn(i-c[j]));

吐槽:

R:容斥原理是什么?我们学过吗?

X:学过啊

R:额,这算学过吗,我只记得老师叫我们用容斥写在100以内是2,3,5的倍数的数有多少,然后要我们查公式,这TM有什么意思,这个题有必要做吗,换个例题不行啊

当时我就想啊,容斥这么垃圾(不要打我......),我就直接跳过了,没想到容斥原来用处挺大的啊(当时讲的那个例题毫无吸引力好吗)

 const
maxs=;
var
f:array[..maxs]of int64;
c:array[..]of longint;
n:longint;
ans:int64; function fn(x:longint):int64;
begin
if x>= then exit(f[x]);
exit();
end; procedure main;
var
i,j,d1,d2,d3,d4,s:longint;
begin
for i:= to do
read(c[i]);
f[]:=;
for j:= to do
for i:= to maxs do
inc(f[i],fn(i-c[j]));
read(n);
for i:= to n do
begin
read(d1,d2,d3,d4,s);
ans:=fn(s);
dec(ans,fn(s-c[]*(d1+)));
dec(ans,fn(s-c[]*(d2+)));
dec(ans,fn(s-c[]*(d3+)));
dec(ans,fn(s-c[]*(d4+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d2+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d4+)));
inc(ans,fn(s-c[]*(d2+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d2+)-c[]*(d4+)));
inc(ans,fn(s-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d2+)-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d3+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d4+)));
dec(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d3+)));
inc(ans,fn(s-c[]*(d1+)-c[]*(d2+)-c[]*(d3+)-c[]*(d4+)));
writeln(ans);
end;
end; begin
main;
end.

1042: [HAOI2008]硬币购物 - BZOJ的更多相关文章

  1. Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1747  Solved: 1015[Submit][Stat ...

  2. bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理

    题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1706  Solved: 985[Submit][ ...

  3. BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )

    先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...

  4. BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]

    1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...

  5. 【BZOJ】1042: [HAOI2008]硬币购物

    1042: [HAOI2008]硬币购物 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3307  Solved: 2075[Submit][Stat ...

  6. BZOJ 1042: [HAOI2008]硬币购物 容斥+背包

    1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...

  7. BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)

    题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...

  8. 【BZOJ】1042: [HAOI2008]硬币购物(dp+容斥原理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1042 一开始写了个O(nv)的背包,果断tle... 看了题解,,好神..用了组合数学中的多重集合方 ...

  9. BZOJ 1042: [HAOI2008]硬币购物 (详解)(背包&容斥原理)

    题面:https://www.cnblogs.com/fu3638/p/6759919.html 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚 ...

随机推荐

  1. Ehcache(2.9.x) - API Developer Guide, Blocking and Self Populating Caches

    About Blocking and Self-Populating Caches The net.sf.ehcache.constructs package contains some applie ...

  2. Android 线程Thread的2种实现方法

    在讲解之前有以下三点要说明: 1.在Android中有两种实现线程Thread的方法: ①扩展java.long.Thread类: ②实现Runnable()接口: 2.Thread类是线程类,它有两 ...

  3. python遍历目录文件脚本的示例

    例子 自己写的一个Python遍历文件脚本,对查到的文件进行特定的处理.没啥技术含量,但是也记录一下吧. 代码如下 复制代码 #!/usr/bin/python# -*- coding: utf-8 ...

  4. js cookie使用方法详解

    代码如下 复制代码 <script>function getCookie(c_name){ if (document.cookie.length>0){ //先查询cookie是否为 ...

  5. ios开发----视图的生命周期

    熟悉web开发的朋友可能对页面page的生命周期有一定的了解和认识,正如web开发中的页面生命周期一样,移动客户端开发也有它自己的生命周期.下文将说明ios开发中视图的生命周期既运行顺序. 在ios视 ...

  6. WF4.0 基础篇 (十八) Flowchar

    本节主要介绍WF4 中 Flowchart的使用 本文例子下载: http://files.cnblogs.com/foundation/FlowcharSample.rar 本文例子说明 Flowc ...

  7. 视酷即时通讯系统应用源码 V1.0

    视酷即时通讯系统(原创),成熟稳定,拥有和微信一样强大的功能不再是梦,节省几个月研发时间迅速融合进项目中: 1.首家支持聊天室群聊 2.支持和微信一样的语音聊天,可以显示时长.未读状态,自动轮播未读语 ...

  8. HACMP 学习笔记--转载自wangjialiang-csdn博客

    An41 教程: Ha: 初始阶段的规划最重要 第一部分:概念和模型 Ha 目标:掩盖和消除计划和非计划的宕机 Eliminate SPOF :消除单节点故障, single point of fai ...

  9. 利用HibernateTools从数据库表生成带注解的POJO

    在SSH框架中,如果先设计好了数据库,那么下一步就需要从数据库Table生成实体java类和hbm.xml配置文件.在最新的开发框架中,已经支持使用注解,从而避免了繁琐的hbm.xml配置,而且我们可 ...

  10. 如何在PowerDesigner将PDM导出生成WORD文档或者html文件

    a)         使用PowerDesigner打开pdm文件 b)         点击Report Temlates 制作模板 点击PowerDesigner菜单栏“Report” -> ...