卷积层的非线性部分

一、ReLU定义

ReLU:全称 Rectified Linear Units)激活函数

定义

def relu(x):

  return x if x >0 else 0

#Softplus为ReLU的平滑版

二、传统sigmoid系激活函数

Sigmoid与人的神经反应很相似,在很多浅层模型上发挥巨大作用

传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在。

从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。

从神经科学上来看,中央区酷似神经元的兴奋态,两侧区酷似神经元的抑制态,因而在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。

无论是哪种解释,看起来都比早期的线性激活函数(y=x),阶跃激活函数(-1/1,0/1)高明了不少。

梯度消失问题

sigmoid导数值的范围(0,  0.25)

tanh的导数值范围(0, 1)

可以看出sigmoid的弱点:对于深度网络,sigmoid在最好的情况下也会把传递的导数数值缩小至0.25倍,下层网络得到的梯度值明显小很多。这会导致模型训练效果很差。

对于浅层网络这种影响不明显,但对于深度网络,反向传导逐渐变成了一个“漫长累积”的过程。

从训练效果看,以不同激活函数的LeNet模型,训练迭代数与Loss的关系——

sigmoid明显弱一些,tanh与ReLU相近

ReLU的优点:没有出现梯度消失问题

三、ReLU的线性性质

作为一个非线性函数,它还具备线性性质

1 0 0

[ 0 1 0 ]  x 向量 = 结果

0 0 0

对线性部分的输出,结果等效于左乘一个非0即1的对角阵(向量负数位置对应对角阵位置上为0),仍可以被看作是一个线性操作

这一性质会使模型的理论分析变得简单

四、ReLU的不足

1:过于宽广的接受域,在接受较大数据时出现不稳定

可以对输入数据上界进行限制,比如ReLU6

2:负数方向

输入数据的负数部分,ReLU会把它置为0,那么梯度也为0,训练过程中负数部分不会更新

解决:一系列的改进函数,比如 Leaky ReLU

CNN卷积层:ReLU函数的更多相关文章

  1. CNN卷积层基础:特征提取+卷积核+反向传播

    本篇介绍卷积层的线性部分 一.与全连接层相比卷积层有什么优势? 卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集.汇聚),从附近的卷积结果中 ...

  2. CNN 卷积层输入Map大小计算

    对于输出的size计算: out_height=((input_height - filter_height + padding_top+padding_bottom)/stride_height ) ...

  3. Tensorflow之CNN卷积层池化层padding规则

    padding的规则 ·        padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例) 输出宽度:output_width = (in_width-filter_wid ...

  4. CNN卷积神经网络的构建

    1.卷积神经网络由输入层,卷积层,激活函数,池化层,全连接层组成. input(输入层)--conv(卷积层)--relu(激活函数)--pool(池化层)--fc(全连接层) 2.卷积层: 主要用来 ...

  5. CNN - 卷积神经网络

    例:  卷积公式: 卷积和卷积没有什么特别的关系,只是计算步骤比较像,成为卷积神经网络名字的由来. 感受野:单个感觉神经元的感受野是感觉空间的特定区域(如体表或视野),在这个区域内,刺激会改变神经元的 ...

  6. 由浅入深:CNN中卷积层与转置卷积层的关系

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...

  7. Deeplearning 两层cnn卷积网络详解

    https://blog.csdn.net/u013203733/article/details/79074452 转载地址: https://www.cnblogs.com/sunshineatno ...

  8. CNN 文本分类模型优化经验——关键点:加卷积层和FC可以提高精度,在FC前加BN可以加快收敛,有时候可以提高精度,FC后加dropout,conv_1d的input维度加大可以提高精度,但是到256会出现OOM。

    network = tflearn.input_data(shape=[None, max_len], name='input') network = tflearn.embedding(networ ...

  9. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

随机推荐

  1. The key of real time embedded system

    对于实时嵌入式系统来说,最重要的是每一个进程所需时间的可检测性,可预测性.要不你的实时性是没有办法保证的.有些时候你对一些没有从事过嵌入式开发的人谈这个进程(TASK)设计是按8ms被调度一次,他们会 ...

  2. 机器学习 - 开发环境安装pycharm + pyspark + spark集成篇

    AS WE ALL KNOW,学机器学习的一般都是从python+sklearn开始学,适用于数据量不大的场景(这里就别计较“不大”具体指标是啥了,哈哈) 数据量大了,就需要用到其他技术了,如:spa ...

  3. 谈谈 在 .Net 生态里为什么没有 Hadoop 系列 ?

    在 .Net 生态里为什么没有 Hadoop 系列  ? 有需要 有 Hadoop 系列 吗  ?

  4. Chrome 66 禁止声音自动播放

    声音无法自动播放一直在IOS/Android上面都是一个惯例, 桌面端的 Safari在2017年的11版本中也宣布禁止带有声音的多媒体自动播放, 紧接着2018年4月份Chrome发布的66版本也正 ...

  5. rtmp和http方式在播放flv方面的各自优势和劣势

    下面是查的一点资料,比较一下用fms的rtmp和web的http播放flv的差别: 1. 区别 用HTTP方式:先通过IIS 将FLV下载到本地缓存,然后再通过NetConnection的本地连接来播 ...

  6. NET设计模式 第二部分 结构性模式(13):代理模式(Proxy Pattern)

    代理模式(Proxy Pattern) ——.NET设计模式系列之十四 Terrylee,2006年5月 摘要:在软件系统中,有些对象有时候由于跨越网络或者其他的障碍,而不能够或者不想直接访问另一个对 ...

  7. Zookeeper 三台主机 Ha集群的搭建

    前期准备1.修改Linux主机名 2.修改IP 3.修改主机名和IP的映射关系 /etc/hosts ######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机.阿里云主机等 ...

  8. ajaxFileupload 多文件上传

    ajaxFileupload 多文件上传 修改前的代码: var oldElement = jQuery('#' + fileElementId); var newElement = jQuery(o ...

  9. RHEL 6.5系统安装配置图解教程(rhel-server-6.5)

    转自:http://www.jb51.NET/os/128752.html 说明: 截止目前RHEL 6.x最新版本为RHEL 6.5,下面介绍RHEL 6.5的具体安装配置过程 服务器相关设置如下: ...

  10. 100M双绞线接头的标准接法

     双绞线接头(RJ45)针脚号码定义