卷积层的非线性部分

一、ReLU定义

ReLU:全称 Rectified Linear Units)激活函数

定义

def relu(x):

  return x if x >0 else 0

#Softplus为ReLU的平滑版

二、传统sigmoid系激活函数

Sigmoid与人的神经反应很相似,在很多浅层模型上发挥巨大作用

传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在。

从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。

从神经科学上来看,中央区酷似神经元的兴奋态,两侧区酷似神经元的抑制态,因而在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。

无论是哪种解释,看起来都比早期的线性激活函数(y=x),阶跃激活函数(-1/1,0/1)高明了不少。

梯度消失问题

sigmoid导数值的范围(0,  0.25)

tanh的导数值范围(0, 1)

可以看出sigmoid的弱点:对于深度网络,sigmoid在最好的情况下也会把传递的导数数值缩小至0.25倍,下层网络得到的梯度值明显小很多。这会导致模型训练效果很差。

对于浅层网络这种影响不明显,但对于深度网络,反向传导逐渐变成了一个“漫长累积”的过程。

从训练效果看,以不同激活函数的LeNet模型,训练迭代数与Loss的关系——

sigmoid明显弱一些,tanh与ReLU相近

ReLU的优点:没有出现梯度消失问题

三、ReLU的线性性质

作为一个非线性函数,它还具备线性性质

1 0 0

[ 0 1 0 ]  x 向量 = 结果

0 0 0

对线性部分的输出,结果等效于左乘一个非0即1的对角阵(向量负数位置对应对角阵位置上为0),仍可以被看作是一个线性操作

这一性质会使模型的理论分析变得简单

四、ReLU的不足

1:过于宽广的接受域,在接受较大数据时出现不稳定

可以对输入数据上界进行限制,比如ReLU6

2:负数方向

输入数据的负数部分,ReLU会把它置为0,那么梯度也为0,训练过程中负数部分不会更新

解决:一系列的改进函数,比如 Leaky ReLU

CNN卷积层:ReLU函数的更多相关文章

  1. CNN卷积层基础:特征提取+卷积核+反向传播

    本篇介绍卷积层的线性部分 一.与全连接层相比卷积层有什么优势? 卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集.汇聚),从附近的卷积结果中 ...

  2. CNN 卷积层输入Map大小计算

    对于输出的size计算: out_height=((input_height - filter_height + padding_top+padding_bottom)/stride_height ) ...

  3. Tensorflow之CNN卷积层池化层padding规则

    padding的规则 ·        padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例) 输出宽度:output_width = (in_width-filter_wid ...

  4. CNN卷积神经网络的构建

    1.卷积神经网络由输入层,卷积层,激活函数,池化层,全连接层组成. input(输入层)--conv(卷积层)--relu(激活函数)--pool(池化层)--fc(全连接层) 2.卷积层: 主要用来 ...

  5. CNN - 卷积神经网络

    例:  卷积公式: 卷积和卷积没有什么特别的关系,只是计算步骤比较像,成为卷积神经网络名字的由来. 感受野:单个感觉神经元的感受野是感觉空间的特定区域(如体表或视野),在这个区域内,刺激会改变神经元的 ...

  6. 由浅入深:CNN中卷积层与转置卷积层的关系

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...

  7. Deeplearning 两层cnn卷积网络详解

    https://blog.csdn.net/u013203733/article/details/79074452 转载地址: https://www.cnblogs.com/sunshineatno ...

  8. CNN 文本分类模型优化经验——关键点:加卷积层和FC可以提高精度,在FC前加BN可以加快收敛,有时候可以提高精度,FC后加dropout,conv_1d的input维度加大可以提高精度,但是到256会出现OOM。

    network = tflearn.input_data(shape=[None, max_len], name='input') network = tflearn.embedding(networ ...

  9. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

随机推荐

  1. prime 又一个开源的基于graphql 的cms

    prime 是一个开源的基于graphql 的cms,类似的已经又好多了,strapi 就是一个(graphql 是通过插件扩展的) graphcms 是一款不错的,但是是收费的,prime 是基于t ...

  2. 无线模块 RXB12-315m TXB12-315M 应用

    近期有个产品用到这对模块,因为没有什么技术支持,就直接上机调试.測试结果为带障碍发射距离60米. 下面是应用的几个知识点: 1:编程操作.事实上比較简单,调制信号315M是模块自带的,不须要调制和解调 ...

  3. 数据格式转换(一)PDF转换技术

         PDF(Portable Document Format)文件格式是Adobe公司开发的电子文件格式. 这样的文件格式与操作系统平台无关.这一特点使它成为在Internet上进行电子文档发行 ...

  4. windows删除文件或目录CMD命令

    rd/s/q 盘符:\某个文件夹  (强制删除文件文件夹和文件夹内所有文件)del/f/s/q 盘符:\文件名  (强制删除文件,文件名必须加文件后缀名)

  5. JavaScript 继承总结

    http://blog.csdn.net/yincheng01/article/details/6841953 Metro C++ http://www.cnblogs.com/michaelxu/a ...

  6. ASP.NET AJAX入门系列(9):在母版页中使用UpdatePanel

    本文简单介绍一下在母版页中使用UpdatePanel控件,翻译自官方文档. 主要内容 1.添加UpdatePanel控件到Content Page 2.通过Master Page刷新UpdatePan ...

  7. Sqoop 导入及导出表数据子集命令详解

    Sqoop命令详解 1.import命令 案例1:将mysql表test中的数据导入hive的hivetest表,hive的hivetest表不存在. sqoop import --connect j ...

  8. CentOS7创建本地yum源

    [root@master ~]# mkdir -p /var/www/html 使用安装系统的ISO镜像文件CentOS-7-x86_64-Everything-1611.iso 把CentOS-7- ...

  9. SpringBoot进阶之web进阶

    1.表单验证: 实体类添加: @Min(value = 18 ,message = "未成年少女禁止入内!")最小值限制为18,如果小于18则返回message中的信息 注入校验, ...

  10. 编译小米mini openwrt

    编译小米mini openwrt 1.下载openwrt源码包:进入要下载保存的文件目录,输入 git clone git://git.openwrt.org/15.05/openwrt.git 2. ...