(PSO-BP)结合粒子群的神经网络算法以及matlab实现
原理:
PSO(粒子群群算法):可以在全局范围内进行大致搜索,得到一个初始解,以便BP接力
BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。
数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x','x')[-5,5]进行采样,得到30组训练数据,拟合该网络。
神经网络结构设置: 该网络结构为,1-7-1结构,即输入1个神经元,中间神经元7个,输出1个神经元
程序步骤:
第一步:先采用抽取30组数据,包括输入和输出
第一步:运行粒子群算法,进行随机搜索,选择一个最优的解,该解的维数为22维。
第二步:在;粒子群的解基础上进行细化搜索
程序代码:
clc
clear
tic
SamNum=30; HiddenNum=7;
InDim=1;
OutDim=1; load train_x
load train_f a=train_x';
d=train_f'; p=[a];
t=[d];
[SamIn,minp,maxp,tn,mint,maxt]=premnmx(p,t); NoiseVar=0.01;
Noise=NoiseVar*randn(1,SamNum);
SamOut=tn + Noise; SamIn=SamIn';
SamOut=SamOut'; MaxEpochs=60000;
lr=0.025;
E0=0.65*10^(-6); %%
%the begin of PSO E0=0.001;
Max_num=500;
particlesize=200;
c1=1;
c2=1;
w=2;
vc=2;
vmax=5;
dims=InDim*HiddenNum+HiddenNum+HiddenNum*OutDim+OutDim;
x=-4+7*rand(particlesize,dims);
v=-4+5*rand(particlesize,dims);
f=zeros(particlesize,1);
%%
for jjj=1:particlesize
trans_x=x(jjj,:);
W1=zeros(InDim,HiddenNum);
B1=zeros(HiddenNum,1);
W2=zeros(HiddenNum,OutDim);
B2=zeros(OutDim,1); W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error) f(jjj)=SSE;
end
personalbest_x=x;
personalbest_f=f;
[groupbest_f i]=min(personalbest_f);
groupbest_x=x(i,:);
for j_Num=1:Max_num
vc=(5/3*Max_num-j_Num)/Max_num;
%%
v=w*v+c1*rand*(personalbest_x-x)+c2*rand*(repmat(groupbest_x,particlesize,1)-x);
for kk=1:particlesize
for kk0=1:dims
if v(kk,kk0)>vmax
v(kk,kk0)=vmax;
else if v(kk,kk0)<-vmax
v(kk,kk0)=-vmax;
end
end
end
end
x=x+vc*v;
%%
for jjj=1:particlesize
trans_x=x(jjj,:);
W1=zeros(InDim,HiddenNum);
B1=zeros(HiddenNum,1);
W2=zeros(HiddenNum,OutDim);
B2=zeros(OutDim,1); W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error); f(jjj)=SSE; end
%%
for kk=1:particlesize
if f(kk)<personalbest_f(kk)
personalbest_f(kk)=f(kk);
personalbest_x(kk)=x(kk);
end
end
[groupbest_f0 i]=min(personalbest_f); if groupbest_f0<groupbest_f
groupbest_x=x(i,:);
groupbest_f=groupbest_f0;
end
ddd(j_Num)=groupbest_f
end
str=num2str(groupbest_f);
trans_x=groupbest_x;
W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
%the end of PSO
%% for i=1:MaxEpochs
%%
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error) ErrHistory=[ SSE]; if SSE<E0,break, end
dB2=zeros(OutDim,1);
dW2=zeros(HiddenNum,OutDim);
for jj=1:HiddenNum
for k=1:SamNum
dW2(jj,OutDim)=dW2(jj,OutDim)+Error(k)*Hiddenout(k,jj);
end
end
for k=1:SamNum
dB2(OutDim,1)=dB2(OutDim,1)+Error(k);
end
dW1=zeros(InDim,HiddenNum);
dB1=zeros(HiddenNum,1);
for ii=1:InDim
for jj=1:HiddenNum for k=1:SamNum
dW1(ii,jj)=dW1(ii,jj)+Error(k)*W2(jj,OutDim)*Hiddenout(k,jj)*(1-Hiddenout(k,jj))*(SamIn(k,ii));
dB1(jj,1)=dB1(jj,1)+Error(k)*W2(jj,OutDim)*Hiddenout(k,jj)*(1-Hiddenout(k,jj)); end
end
end W2=W2-lr*dW2;
B2=B2-lr*dB2; W1=W1-lr*dW1;
B1=B1-lr*dB1;
end Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1); aa=postmnmx(Networkout,mint,maxt);
x=a;
newk=aa;
figure
plot(x,d,'r-o',x,newk,'b--+')
legend('原始数据','训练后的数据');
xlabel('x');ylabel('y');
toc
注:在(i5,8G,win7,64位)PC上的运行时间为30s左右。鉴于PSO带有概率性,可以多跑几次,看最佳的一次效果。

转载于:https://www.cnblogs.com/jacksin/p/8835907.html
(PSO-BP)结合粒子群的神经网络算法以及matlab实现的更多相关文章
- 群智能优化算法-测试函数matlab源码
群智能优化算法测试函数matlab源代码 global M; creatematrix(2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %画ackley图. %%%% ...
- 粒子群算法(PSO)算法解析(简略版)
粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...
- 粒子群算法优化BP生物能神经网络
定义: 粒子群中每个粒子的位置表示BP神经网络当前迭代中权值的集合,每个粒子的维数由网络中起连接作用的权值的数量和阈值个数决定,以给定训练样本集的神经网络输出误差作为神经网络训练问题的适应度函数,适应 ...
- 粒子群优化算法对BP神经网络优化 Matlab实现
1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作 ...
- 算法(三)粒子群算法PSO的介绍
一.引言 在讲算法之前,先看两个例子: 例子一:背包问题,一个书包,一堆物品,每个物品都有自己的价值和体积,装满书包,使得装的物品价值最大. 例子二:投资问题,n个项目,第i个项目投资为ci 收益为p ...
- ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)
ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...
- 计算智能(CI)之粒子群优化算法(PSO)(一)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...
- 【比较】粒子群算法PSO 和 遗传算法GA 的相同点和不同点
目录 PSO和GA的相同点 PSO和GA不同点 粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解. PSO和G ...
- C语言实现粒子群算法(PSO)二
上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...
随机推荐
- qW3xT.2,解决挖矿病毒
在阿里云使用redis,开启了6379端口,但是当时并没有对redis的密码进行设置. 在晚上一点左右.阿里云给我发短信,告诉我服务器出现紧急安全事件.建议登录云盾-态势感知控制台查看详情和处理. 于 ...
- 关于$f(x)=\int_0^x\left|\sin\frac1t\right|\text dt$求导的问题
首先,我们考虑\(f(x)\)在\(\mathbb R\)上都是定义的.根据定义,显然有\(f(0)=0\):其次,对于\(x\neq0\),不妨先设\(x\gt0\),则有在\(t\rightarr ...
- node.js代码
// 1. 引入 express var express = require('express'); var formidable = require('formidable'); var mysql ...
- 初始WebApi(1)
如果你要问我WebApi是干嘛,我只能说它是的给数据.哈哈哈哈哈,这几天也才刚刚了解了解关于WebApi的知识,今天就来谈谈吧. 1.创建WebApi项目 第一步:选择ASP.NET Web应用程序 ...
- 汇编刷题 已知整数变量A和B,试编写完成下列操作的程序
1.若两个数中有一个是奇数,一个是偶数,则将它们互换储存地址 2.若两个数都是奇数,则分别加一 3.若两个数都是偶数,则不变 DATA SEGMENT A DB 12H B DB 25H DATA E ...
- javascript入门 之 zTree(十四 增删查改)(一)
<!DOCTYPE html> <HTML> <HEAD> <TITLE> ZTREE DEMO - beforeEditName / beforeRe ...
- 20175110 王礼博 exp4恶意代码分析
目录 1.基础知识 2.系统运行监控 3.恶意软件分析 4.基础问题回答 5.实践总结与体会 1. 基础知识 1.1 恶意代码的概念与分类 定义:指故意编制或设置的.对网络或系统会产生威胁或潜在威胁的 ...
- Java入门第一阶段总结
前言 写了三周的模拟题,对原本就厌恶的模拟更加深恶痛绝.但是不得不说模拟题是对一门语言入门掌握其语法成效最快的一类题,轻松地从C入门到了Java.一直坚信各门语言都是想通的,一力破万法. 作业过程总结 ...
- SVG案例:动态去创建元素createElementNS
案例一: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...
- matlab操作Excel数据
sheet是Excel的表格,xIRange是表格的列的范围 指定xlRange,例如使用语法'C1:C2',其中C1和C2是定义要读取的区百域的两个度相对的角. 例如,'D2:H4'表示工作表上的两 ...