原理:
           PSO(粒子群群算法):可以在全局范围内进行大致搜索,得到一个初始解,以便BP接力
           BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。
数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x','x')[-5,5]进行采样,得到30组训练数据,拟合该网络。

     神经网络结构设置:   该网络结构为,1-7-1结构,即输入1个神经元,中间神经元7个,输出1个神经元

程序步骤:

第一步:先采用抽取30组数据,包括输入和输出

第一步:运行粒子群算法,进行随机搜索,选择一个最优的解,该解的维数为22维。

第二步:在;粒子群的解基础上进行细化搜索

程序代码:

clc
clear
tic
SamNum=30; HiddenNum=7;
InDim=1;
OutDim=1; load train_x
load train_f a=train_x';
d=train_f'; p=[a];
t=[d];
[SamIn,minp,maxp,tn,mint,maxt]=premnmx(p,t); NoiseVar=0.01;
Noise=NoiseVar*randn(1,SamNum);
SamOut=tn + Noise; SamIn=SamIn';
SamOut=SamOut'; MaxEpochs=60000;
lr=0.025;
E0=0.65*10^(-6); %%
%the begin of PSO E0=0.001;
Max_num=500;
particlesize=200;
c1=1;
c2=1;
w=2;
vc=2;
vmax=5;
dims=InDim*HiddenNum+HiddenNum+HiddenNum*OutDim+OutDim;
x=-4+7*rand(particlesize,dims);
v=-4+5*rand(particlesize,dims);
f=zeros(particlesize,1);
%%
for jjj=1:particlesize
trans_x=x(jjj,:);
W1=zeros(InDim,HiddenNum);
B1=zeros(HiddenNum,1);
W2=zeros(HiddenNum,OutDim);
B2=zeros(OutDim,1); W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error) f(jjj)=SSE;
end
personalbest_x=x;
personalbest_f=f;
[groupbest_f i]=min(personalbest_f);
groupbest_x=x(i,:);
for j_Num=1:Max_num
vc=(5/3*Max_num-j_Num)/Max_num;
%%
v=w*v+c1*rand*(personalbest_x-x)+c2*rand*(repmat(groupbest_x,particlesize,1)-x);
for kk=1:particlesize
for kk0=1:dims
if v(kk,kk0)>vmax
v(kk,kk0)=vmax;
else if v(kk,kk0)<-vmax
v(kk,kk0)=-vmax;
end
end
end
end
x=x+vc*v;
%%
for jjj=1:particlesize
trans_x=x(jjj,:);
W1=zeros(InDim,HiddenNum);
B1=zeros(HiddenNum,1);
W2=zeros(HiddenNum,OutDim);
B2=zeros(OutDim,1); W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error); f(jjj)=SSE; end
%%
for kk=1:particlesize
if f(kk)<personalbest_f(kk)
personalbest_f(kk)=f(kk);
personalbest_x(kk)=x(kk);
end
end
[groupbest_f0 i]=min(personalbest_f); if groupbest_f0<groupbest_f
groupbest_x=x(i,:);
groupbest_f=groupbest_f0;
end
ddd(j_Num)=groupbest_f
end
str=num2str(groupbest_f);
trans_x=groupbest_x;
W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
%the end of PSO
%% for i=1:MaxEpochs
%%
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error) ErrHistory=[ SSE]; if SSE<E0,break, end
dB2=zeros(OutDim,1);
dW2=zeros(HiddenNum,OutDim);
for jj=1:HiddenNum
for k=1:SamNum
dW2(jj,OutDim)=dW2(jj,OutDim)+Error(k)*Hiddenout(k,jj);
end
end
for k=1:SamNum
dB2(OutDim,1)=dB2(OutDim,1)+Error(k);
end
dW1=zeros(InDim,HiddenNum);
dB1=zeros(HiddenNum,1);
for ii=1:InDim
for jj=1:HiddenNum for k=1:SamNum
dW1(ii,jj)=dW1(ii,jj)+Error(k)*W2(jj,OutDim)*Hiddenout(k,jj)*(1-Hiddenout(k,jj))*(SamIn(k,ii));
dB1(jj,1)=dB1(jj,1)+Error(k)*W2(jj,OutDim)*Hiddenout(k,jj)*(1-Hiddenout(k,jj)); end
end
end W2=W2-lr*dW2;
B2=B2-lr*dB2; W1=W1-lr*dW1;
B1=B1-lr*dB1;
end Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1); aa=postmnmx(Networkout,mint,maxt);
x=a;
newk=aa;
figure
plot(x,d,'r-o',x,newk,'b--+')
legend('原始数据','训练后的数据');
xlabel('x');ylabel('y');
toc

注:在(i5,8G,win7,64位)PC上的运行时间为30s左右。鉴于PSO带有概率性,可以多跑几次,看最佳的一次效果。

转载于:https://www.cnblogs.com/jacksin/p/8835907.html

(PSO-BP)结合粒子群的神经网络算法以及matlab实现的更多相关文章

  1. 群智能优化算法-测试函数matlab源码

    群智能优化算法测试函数matlab源代码 global M; creatematrix(2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %画ackley图. %%%% ...

  2. 粒子群算法(PSO)算法解析(简略版)

    粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...

  3. 粒子群算法优化BP生物能神经网络

    定义: 粒子群中每个粒子的位置表示BP神经网络当前迭代中权值的集合,每个粒子的维数由网络中起连接作用的权值的数量和阈值个数决定,以给定训练样本集的神经网络输出误差作为神经网络训练问题的适应度函数,适应 ...

  4. 粒子群优化算法对BP神经网络优化 Matlab实现

    1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作 ...

  5. 算法(三)粒子群算法PSO的介绍

    一.引言 在讲算法之前,先看两个例子: 例子一:背包问题,一个书包,一堆物品,每个物品都有自己的价值和体积,装满书包,使得装的物品价值最大. 例子二:投资问题,n个项目,第i个项目投资为ci 收益为p ...

  6. ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)

    ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...

  7. 计算智能(CI)之粒子群优化算法(PSO)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...

  8. 【比较】粒子群算法PSO 和 遗传算法GA 的相同点和不同点

    目录 PSO和GA的相同点 PSO和GA不同点 粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解. PSO和G ...

  9. C语言实现粒子群算法(PSO)二

    上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...

随机推荐

  1. ssl & ike/ipsec

    SSL/TLS

  2. Flask 入门(六)

    连接数据库 任何一门后端语言都可以连接数据库,python-flask也不例外 flask利用SQLAlchemy ORM连接数据库 接下来,我门来练习如何连接数据库: 1.首先,电脑上得有mysql ...

  3. CH5701 开车旅行(倍增dp+set)

    传送门 解题思路: 一道比较有趣的题,解题工作主要分为两块: ①找出k(k=0表示小A先走,k=1表示小B先走,下面同理)从点i出发下一个到达的点to[k][i]; 一开始偷懒用了vector(偷懒一 ...

  4. CentOS Linux安装后扩充SWAP分区

    1. 首先先查看目前swap分区大小:     free -hm    total used free shared buffers cached    Mem: 11G 801M 10G 236K ...

  5. 拓扑排序入门详解&&Educational Codeforces Round 72 (Rated for Div. 2)-----D

    https://codeforces.com/contest/1217 D:给定一个有向图,给图染色,使图中的环不只由一种颜色构成,输出每一条边的颜色 不成环的边全部用1染色 ps:最后输出需要注意, ...

  6. git获取特定的commit

    git reset --hard [commit_id]

  7. std::string 字符串分割

    #include <iostream> #include <string> #include <vector> std::vector<std::string ...

  8. undefined 和 not defined

    概念上的解释: undefined是javascript语言中定义的五个原始类中的一个,换句话说,undefined并不是程序报错,而是程序允许的一个值. not defined是javascript ...

  9. Ansible简明教程

    Ansible是当下比较流行的自动化运维工具,可通过SSH协议对远程服务器进行集中化的配置管理.应用部署等,常结合Jenkins来实现自动化部署. 除了Ansible,还有像SaltStack.Fab ...

  10. Anadi and Domino--codeforces div2

    题目链接:https://codeforces.com/contest/1230/problem/C 题目大意:21枚多米诺牌,给你一个图,将多米诺牌放到图的边上,由同一个点发出的所有边,边上多米诺牌 ...