Magic Stones CodeForces - 1110E (思维+差分)
1 second
256 megabytes
standard input
standard output
Grigory has nn magic stones, conveniently numbered from 11 to nn. The charge of the ii-th stone is equal to cici.
Sometimes Grigory gets bored and selects some inner stone (that is, some stone with index ii, where 2≤i≤n−12≤i≤n−1), and after that synchronizes it with neighboring stones. After that, the chosen stone loses its own charge, but acquires the charges from neighboring stones. In other words, its charge cici changes to c′i=ci+1+ci−1−cici′=ci+1+ci−1−ci.
Andrew, Grigory's friend, also has nn stones with charges titi. Grigory is curious, whether there exists a sequence of zero or more synchronization operations, which transforms charges of Grigory's stones into charges of corresponding Andrew's stones, that is, changes cici into titi for all ii?
The first line contains one integer nn (2≤n≤1052≤n≤105) — the number of magic stones.
The second line contains integers c1,c2,…,cnc1,c2,…,cn (0≤ci≤2⋅1090≤ci≤2⋅109) — the charges of Grigory's stones.
The second line contains integers t1,t2,…,tnt1,t2,…,tn (0≤ti≤2⋅1090≤ti≤2⋅109) — the charges of Andrew's stones.
If there exists a (possibly empty) sequence of synchronization operations, which changes all charges to the required ones, print "Yes".
Otherwise, print "No".
4
7 2 4 12
7 15 10 12
Yes
3
4 4 4
1 2 3
No
In the first example, we can perform the following synchronizations (11-indexed):
- First, synchronize the third stone [7,2,4,12]→[7,2,10,12][7,2,4,12]→[7,2,10,12].
- Then synchronize the second stone: [7,2,10,12]→[7,15,10,12][7,2,10,12]→[7,15,10,12].
In the second example, any operation with the second stone will not change its charge
思路:
通过样例观察:
In the first example, we can perform the following synchronizations (11-indexed):
- First, synchronize the third stone [7,2,4,12]→[7,2,10,12][7,2,4,12]→[7,2,10,12].
- Then synchronize the second stone: [7,2,10,12]→[7,15,10,12][7,2,10,12]→[7,15,10,12
我们来看最初的数组,和中途的数组,以及目标数组,他们的差分都是【5,8,2】这三个数,变来变去都是这三个,
再加以观察可以发现,我们每执行一个操作,影响的只是交换了差分,那么只需要数组的首尾两个数相等,并且中间的差分数排序后相等即可保证一一定能交换成功。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define rt return
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int a[maxn];
int b[maxn];
int main()
{
gbtb;
cin>>n;
repd(i,,n)
{
cin>>a[i];
}
repd(i,,n)
{
cin>>b[i];
} std::vector<int> v1;
std::vector<int> v2;
bool isok=;
if(a[]!=b[]||a[n]!=b[n])
{
// db(2);
isok=;
} repd(i,,n)
{
v1.pb(a[i]-a[i-]);
v2.pb(b[i]-b[i-]);
}
int z=sz(v1);
sort(v1.begin(),v1.end());
sort(v2.begin(),v2.end());
repd(i,,z-)
{
if(v1[i]!=v2[i])
{
isok=;
}
}
if(isok)
{
printf("Yes\n");
}else
{
printf("No\n");
}
return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
Magic Stones CodeForces - 1110E (思维+差分)的更多相关文章
- Codeforces 1110E (差分)
题面 传送门 分析 一开始考虑贪心和DP,发现不行 考虑差分: 设d[i]=c[i+1]-c[i] (i<n) 那么一次操作会如何影响差分数组呢? \(c[i]'=c[i+1]+c[i-1]-c ...
- E. Magic Stones CF 思维题
E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- 【CF1110E】 Magic Stones - 差分
题面 Grigory has n n magic stones, conveniently numbered from \(1\) to \(n\). The charge of the \(i\)- ...
- CF 1110 E. Magic Stones
E. Magic Stones 链接 题意: 给定两个数组,每次可以对一个数组选一个位置i($2 \leq i \leq n - 1$),让a[i]=a[i-1]+a[i+1]-a[i],或者b[i] ...
- Magic Numbers CodeForces - 628D
Magic Numbers CodeForces - 628D dp函数中:pos表示当前处理到从前向后的第i位(从1开始编号),remain表示处理到当前位为止共产生了除以m的余数remain. 不 ...
- Dima and Magic Guitar CodeForces - 366E
Dima and Magic Guitar CodeForces - 366E 题意: http://blog.csdn.net/u011026968/article/details/38716425 ...
- LZH的多重影分身 qduoj 思维 差分
LZH的多重影分身 qduoj 思维 差分 原题链接:https://qduoj.com/problem/591 题意 在数轴上有\(n\)个点(可以重合)和\(m\)条线段(可以重叠),你可以同时平 ...
- Codeforces.1110E.Magic Stones(思路 差分)
题目链接 听dalao说很nb,做做看(然而不小心知道题解了). \(Description\) 给定长为\(n\)的序列\(A_i\)和\(B_i\).你可以进行任意多次操作,每次操作任选一个\(i ...
- 【Codeforces 1110E】Magic Stones
Codeforces 1110 E 题意:给定两个数组,从第一个数组开始,每次可以挑选一个数,把它变化成左右两数之和减去原来的数,问是否可以将第一个数组转化成第二个. 思路: 结论:两个数组可以互相转 ...
随机推荐
- 数据库之mysql篇(1)—— 数据库管理系统简介/mysql的安装、配置
说mysql之前,还是先说说数据库. 什么是数据库: 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后 ...
- SQLServer基础之数据页类型:GAM,SGAM,PFS
简介 我们已经知道SQL Server IO最小的单位是页,连续的8个页是一个区.SQL Server需要一种方式来知道其所管辖的数据库中的空间使用情况,这就是GAM页和SGAM页. GAM页 GAM ...
- centOS7docker安装oracle
1.拉取oracle 11g 的镜像: 用root登陆服务器,输入下面的命令,拉取oracle 11g的镜像,有点大,6.8G多: docker pull registry.cn-hangzhou.a ...
- LeetCode算法题-Linked List Cycle(Java实现)
这是悦乐书的第176次更新,第178篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第35题(顺位题号是141).给定一个链表,确定它是否有一个循环. 本次解题使用的开发工 ...
- layui form.on('select(xxx)',function(){});绑定失败
使用layui的form.on绑定select选中事件中, form.on()不执行, 主要原因有 1, select标签中没有写lay_filter属性,用来监听 <select id=&qu ...
- 《Java大学教程》--第3章 迭代
迭代(iteration).重复(repetition):三种循环* for: 重复执行固定次数* while: 重复执行不固定次数* do...while: 比while至少多一次 1.答:P47迭 ...
- 【Linux基础】alias命令指定别名
1.alias命令 alias是一个系统自建的shell命令,允许你为名字比较长的或者经常使用的命令指定别名. alias //显示当前定义的所有别名 alias ll='ls -l' //定义别名l ...
- 获取WebApplicationContext的几种方式
加载WebApplicationContext的方式 WebApplicationContext是ApplicationContext的子接口,纵观Spring框架的几种容器,BeanFactory作 ...
- Linux 27 岁了!盘点 Linux 的 27 件趣事
Linux 27 岁了!盘点 Linux 的 27 件趣事 许多人认为10月5日是 Linux 系统的周年纪念日,因为这是 Linux 在1991年首次对外公布的时间.不过,你可能不知道的是,早在19 ...
- Linux:Day24(下) samba
samba: smb:Service Message Block 是一种协议 CIFS:Common Internet File System smb --> samba 137/udp,138 ...