传送门啦

战略游戏这个题和保安站岗很像,这个题更简单,这个题求的是士兵人数,而保安站岗需要求最优价值。

定义状态$ f[u][0/1] $ 表示 $ u $ 这个节点不放/放士兵

根据题意,如果当前节点不放置士兵,那么它的子节点必须全部放置士兵,因为要满足士兵可以看到所有的边,所以

$ f[u][0]+=f[v][1] $ ,其中$ v $ 是 $ u $ 的子节点

如果当前节点放置士兵,它的子节点选不选已经不重要了(因为树形dp自下而上更新,上面的节点不需要考虑),所以

$ f[u][1]+=min(f[v][0],f[v][1]) $

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1505; inline int read(){
char ch = getchar();
int f = 1 , x = 0;
while(ch > '9' || ch < '0'){if(ch == '-')f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}
return x * f;
} int n,flag,k,x;
int head[maxn],tot;
int f[maxn][5]; struct Edge{
int from,to,next;
}edge[maxn << 1]; void add(int u,int v){
edge[++tot].from = u;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot;
} void dfs(int u,int fa) {
f[u][1] = 1 , f[u][0] = 0;
for(int i=head[u];i;i=edge[i].next) {
int v = edge[i].to;
if(v != fa) {
dfs(v , u);
f[u][0] += f[v][1];
f[u][1] += min(f[v][1] , f[v][0]);
}
}
} int main(){
n = read();
for(int i=0;i<=n-1;i++){
flag = read(); k = read();
if(k == 0)continue;
for(int i=1;i<=k;i++){
x = read();
add(flag , x); add(x , flag);
}
}
dfs(0 , -1);
printf("%d\n",min(f[0][1] , f[0][0]));
return 0;
}

洛谷P2016战略游戏的更多相关文章

  1. 洛谷P2016 战略游戏

    P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...

  2. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  3. 【洛谷P2016战略游戏】

    树形dp的经典例题 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的 ...

  4. 洛谷 P2016 战略游戏

    题意简述简述 求一棵树的最小点覆盖 题解思路 树形DP dp[i][0]表示第i个点覆盖以i为根的子树的最小值,且第i个点不放士兵 dp[i][1]表示第i个点覆盖以i为根的子树的最小值,且第i个点放 ...

  5. $loj10156/$洛谷$2016$ 战略游戏 树形$DP$

    洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...

  6. 洛谷 2016 战略游戏(树形DP)

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...

  7. 洛谷2016 战略游戏 (0/1状态的普通树形Dp)

    题意: 给出一个树,覆盖树上某一个点的花费为w[i],求树上每一条边至少有一个点覆盖的最小花费. 细节: 1.一条边的两端可以均被覆盖,但是不能存在一条边的两端都不被覆盖. 2.可能存在 分析: 对于 ...

  8. 洛谷 P2197 nim游戏

    洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...

  9. 洛谷 P1965 转圈游戏

    洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...

随机推荐

  1. opencv imread值为空

    调试程序错误如下: 此时test.jpg文件放在了sln解决方案文件夹内,并没有放在proj项目文件夹内,放到项目文件夹下后,调试如下图 这时候img就读取到图像了,最终显示图像如下,显示的很大,再研 ...

  2. 微信授权,openid 分享

    https://packagist.org/packages/fcode/wxshare

  3. Docker入门与应用系列(四)网络管理

    一.Docker的五种网络模式 在使用docker run创建docker容器时,可以用--net选项指定容器的网络模式,Docker有以下5种网络模式: 1. bridge模式 使用docker r ...

  4. gitlab的备份与恢复与迁移

    一.gitlab的备份1.1 创建备份目录,并授权 1 2 3 4 [root@linux-node1 ~]# mkdir /data/backups/gitlab -p [root@linux-no ...

  5. python---权限管理和菜单生成

    一:表结构(共八张表) from django.db import models # Create your models here. class User(models.Model): userna ...

  6. 搞ACM的你伤不起[转载] 原作者:RoBa

    劳资六年前开始搞ACM啊!!!!!!!!!! 从此踏上了尼玛不归路啊!!!!!!!!!!!! 谁特么跟劳资讲算法是程序设计的核心啊!!!!!! 尼玛除了面试题就没见过用算法的地方啊!!!!!! 谁再跟 ...

  7. jdk1.8.0_45源码解读——LinkedList的实现

    jdk1.8.0_45源码解读——LinkedList的实现 一.LinkedList概述 LinkedList是List和Deque接口的双向链表的实现.实现了所有可选列表操作,并允许包括null值 ...

  8. soj1047.Super Snooker(转换思路+二路求和)

    Description On one of my many interplanetary travels I landed on a beautiful little planet called Cr ...

  9. JS日历,可获得指定日期周数及星期几

    需求来自一个朋友:编写一个简易日历.在文本框中输入要查找的日期,程序可以计算出这一天处在该年份的第几周,并且能判断出这一天到底是星期几. 应为要有交互,选择了Js来实现,也算是 结对编程 的初试吧. ...

  10. 【转】c#.net各种应用程序中获取文件路径的方法

    控制台应用程序:Environment.CurrentDirectory.Directory.GetCurrentDirectory() windows服务:Environment.CurrentDi ...