洛谷2254

给你k次移动

每次移动给你一个时间段 a,b和方向dir

地图上有障碍物

为了不撞上障碍物你可以施法让箱子停下来

问箱子可以走的最长路

((以下是洛谷的题解))

/*首先考虑对于时间t来dp: f[t][i][j]表示在第t时刻在第i行第j列所能获得的最长距离。

转移方程:f[t][i][j]=max(f[t-1][i][j],f[t][i*][j*]+1)(i*,j*为上一个合理的位置) 这样时间复杂度为O(TNM),可以过50%,但对于100%TLE且MLE。

所以必须优化,首先把时间t换成区间k, 令f[k][i][j]表示在第k段滑行区间中在位置i,

j所能获得最长距离 注意到在第k段时间内只能向某个方向最多走x步(x为区间长度),

得到转移方程 f[k][i][j]=max(f[k-1][i][j],f[k][i*][j*]+dis(i,j,i*,j*))(i*,j*为上一个合理的位置) 这个做法的时间复杂度是O(kn^3),会超时,

需要进一步优化 用单调队列优化掉内层的一个n,就可以做到O(kn^2),可以AC,

本代码中还使用了滚动数组优化 用单调递减队列求最大值时,遇到障碍清空整个队列即可,另外队列比较时需要加上偏移量dis*/

 #include<bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define first fi
#define second se
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define eps 1e-9
#define PIE acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define ls (rt<<1)
#define rs (ls|1)
#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define freopen freopen("in.txt","r",stdin);
#define cfin ifstream cin("in.txt");
#define lowbit(x) (x&(-x))
#define sqr(a) a*a
#define ll long long
#define ull unsigned long long
#define vi vector<int>
#define pii pair<int, int>
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
//**********************************
const int maxn=;
const int dx[]={,-,,,},dy[]={,,,-,};
int n,m,X,Y,k;
char pic[maxn][maxn];
int dp[maxn][maxn];
int ans;
struct node{
int id,v;
}que[maxn];
//**********************************
inline bool in(int x,int y)
{
return x>=&&x<=n&&y>=&&y<=m;
}
void solve(int x,int y,int len,int dir)
{
int head=,tail=;
for(int i=;in(x,y);++i,x+=dx[dir],y+=dy[dir]){
if(pic[x][y]=='x') head=,tail=;
else {
while(head<=tail&&que[tail].v+i-que[tail].id<dp[x][y])tail--;
que[++tail]=node{i,dp[x][y]};
if(que[tail].id-que[head].id>len)++head;
dp[x][y]=que[head].v+i-que[head].id;
ans=max(ans,dp[x][y]);
}
}
}
//**********************************
int main()
{
// freopen;
ans=;
scanf("%d %d %d %d %d",&n,&m,&X,&Y,&k);
cl(dp,-INF);dp[X][Y]=;
FOR(i,,n)scanf("%s",pic[i]+);
// FOR(i,1,n)printf("%s\n",pic[i]+1);
FOR(i,,k){
int a,b,dir;
scanf("%d %d %d",&a,&b,&dir);
int len=b-a+;
if(dir==)FOR(i,,m)solve(n,i,len,);
else if(dir==)FOR(i,,m)solve(,i,len,);
else if(dir==)FOR(i,,n)solve(i,m,len,);
else if(dir==)FOR(i,,n)solve(i,,len,);
}
// de(dp[4][2]);
printf("%d\n",ans);
return ;
}

单调队列优化dp,k次移动求最长路的更多相关文章

  1. 【单调队列优化dp】uestc 594 我要长高

    http://acm.uestc.edu.cn/#/problem/show/594 [AC] #include<bits/stdc++.h> using namespace std; t ...

  2. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  3. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  4. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  5. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  6. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

  7. BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP

    BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...

  8. 单调队列优化dp

    洛谷p3800(单调队列优化DP) 题目背景 据说在红雾异变时,博丽灵梦单身前往红魔馆,用十分强硬的手段将事件解决了. 然而当时灵梦在Power达到MAX之前,不具有“上线收点”的能力,所以她想要知道 ...

  9. 【单调队列优化dp】HDU 3401 Trade

    http://acm.hdu.edu.cn/showproblem.php?pid=3401 [题意] 知道之后n天的股票买卖价格(api,bpi),以及每天股票买卖数量上限(asi,bsi),问他最 ...

  10. CF939F Cutlet (单调队列优化DP)

    题目大意:要煎一块有两个面的肉,只能在一段k不相交的时间段$[l_{i},r_{i}]$内翻转,求$2*n$秒后,保证两个面煎的时间一样长时,需要最少的翻转次数,$n<=100000$,$k&l ...

随机推荐

  1. php--最新正则(手机号码)

    这次给大家带来正则验证(2018最新最全手机号验证),正则验证(2018最新最全手机号验证)的注意事项有哪些,下面就是实战案例,一起来看一下. 下面给大家分享2018手机号正则表达式验证方法,具体内容 ...

  2. Jerry和您聊聊Chrome开发者工具

    Chrome开发者工具是Jerry日常工作使用的三大调试器之一.虽然工具名称前面带了个"开发者", 但是它对非开发人员仍然有用.不信? 用Chrome打开我们常用的网站,按F12, ...

  3. 变种XSS:持久控制

    变种XSS:持久控制 tig3r · 2015/11/30 10:42 0x00 引言 首先声明,这不是一个新洞,看过 Homakov 文章(最后附)以及译文的人想必对这种漏洞有所了解. 但原文写的太 ...

  4. 解决WinForm屏幕缩放适配只需修改两个Form的两个属性

    最近要做一个windows下截屏识别文字的程序,调试发现截取的图像显示不完整. 输出了Screen.PrimaryScreen.Bounds.Width获取的值,结果与实际分辨率不同,所以确定了与我的 ...

  5. 【Distributed】大型网站高并发和高可用

    一.DNS域名解析 二.大型网站系统应有的特点 三.网站架构演变过程 3.1 传统架构 3.2 分布式架构 3.3 SOA架构 3.4 微服务架构 四.高并发设计原则 4.1 拆分系统 4.2 服务化 ...

  6. 解决Django项目静态资源无法访问的问题

    静态资源无法访问 url.py中配置 from django.conf.urls import url from django.views import static from django.conf ...

  7. 010.简单查询、分组统计查询、多表连接查询(sql实例)

    -------------------------------------day3------------ --添加多行数据:------INSERT [INTO] 表名 [(列的列表)] --SEL ...

  8. 04_ Flume采集文件到HDFS案例

    采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs 根据需求,首先定义以下3大要素 采集源,即source——监控文件内容更新 :  ex ...

  9. 洛谷 P3469 [POI2008]BLO-Blockade (Tarjan,割点)

    P3469 [POI2008]BLO-Blockade https://www.luogu.org/problem/P3469 题目描述 There are exactly nn towns in B ...

  10. Linux的基础使用命令

    ifconfig  #查看ip地址     或者使用  ip  a pwd  #查看当前工作路径 man  pwd   #查看命令的详细信息   按q退出 mkdir  /data  创建data目录 ...