大家好~本课程为“深度学习基础班”的线上课程,带领同学从0开始学习全连接和卷积神经网络,进行数学推导,并且实现可以运行的Demo程序

线上课程资料:

本节课录像回放

加QQ群,获得ppt等资料,与群主交流讨论:106047770

本系列文章为线上课程的复盘,每上完一节课就会同步发布对应的文章

本课程系列文章可进入索引查看:

深度学习基础课系列文章索引

主问题:如何加快多分类的训练速度?

  • “识别手写数字“属于单分类还是多分类?

    答:多分类
  • “识别手写数字“是否能使用单分类中的交叉熵损失函数?

    答:不能
  • 为什么?

    答:
\[\begin{aligned}
\frac{dE}{dw_{kj}} &=\delta_k a_j \\
&= \frac{dE}{dy_k}\frac{df(net_k)}{dnet_k} a_j \\
\end{aligned}
\]

因为目前的交叉熵损失函数是在单分类下推导的。

而在多分类下,由于原有的激活函数不再适合,需要更换新的激活函数,导致上面公式中的\(\frac{df(net_k)}{dnet_k}\)发生了变化,导致损失函数E也需要改变,

所以需要新的损失函数

  • 输出层原来的sigmoid激活函数是否适用于多分类的情况?

    答:不适用
  • 输出层需要新的激活函数
  • 如何设计新的激活函数?
    • 我们现在用a表示激活函数的输出值
    • 激活函数要满足什么条件?

      答: \(
      a_k \in [0.0, 1.0] 以及 \sum_{k=1}^n a_k= 1
      \)
    • 你能设计一个满足该条件的激活函数吗?

      答:\(a_k = \frac{t_k}{\sum_{i} t_i} 且t_i(包括t_k) >0.0\)
  • 我们使用softmax激活函数,它的公式为:

    答: \(
    a_k = \frac{e^{net_k}}{\sum_{i=1}^n e^{net_i}}
    \)

    为什么\(t_k\)使用\(e^k\)这种函数呢?这可能是因为它大于0.0;并且由于是非线性的所以值的间隔拉的比较开,从而能适应更多的变化
  • softmax是否满足条件?

    答:满足
  • 我们现在用y表示真实值(即标签)
  • 如何计算loss?

    答:\(
    \overrightarrow{loss} = \overrightarrow{a_{输出层}} - \overrightarrow{y}
    \)
  • 如何参考设计单分类误差项公式的思路来设计多分类误差项的公式,使其满足loss与误差项成正比?

    答:\(
    \overrightarrow{\delta_{输出层}} =\overrightarrow{loss} = \overrightarrow{a_{输出层}} - \overrightarrow{y}
    \)
  • 我们需要将单分类的交叉熵损失函数修改一下,使其满足什么公式?

    答:为了简单,我们暂时不考虑误差项向量,而只考虑单个神经元的误差项。所以应该满足下面的公式:

    \(
    E = ?从而
    \sum_{i=1}^n \frac{dE}{da_i} \frac{da_i}{dnet_k}=\delta_k =a_k - y_k
    \)

    (注意:因为每个a的计算都有所有的net参加,所以要使用全导数公式进行累加)
  • 现在直接给出修改后的交叉熵损失函数的公式: \(E = - \sum_{j=1}^n y_j \ln a_j \\\)
  • 请根据修改后的损失函数和softmax激活函数公式,推导误差项,看下是否为设计的公式: \(
    \delta_k =\sum_{i=1}^n \frac{dE}{da_i} \frac{da_i}{dnet_k}= ?(应该为a_k - y_k)
    \)

答:

\(\because\)

\[\begin{aligned}

\frac{dE}{da_i} &= \frac{d- \sum_{j=1}^n y_j \ln a_j }{da_i}
&= - \frac{y_i}{a_i}

\end{aligned}
\]

\(\therefore\)

\[\begin{aligned}

\delta_k &= \sum_{i=1}^n \frac{dE}{da_i} \frac{da_i}{dnet_k} \\
&= - \sum_{i=1}^n \frac{y_i}{a_i} \frac{da_i}{dnet_k} \\

\end{aligned}
\]

因为只能有一个真实值为1,所以假设\(y_j=1\),其它\(y_i=0\),则

\[\begin{aligned}

\delta_k &= - \frac{1}{a_j} \frac{da_j}{dnet_k} \\

\end{aligned}
\]

现在需要推导\(\frac{da_j}{dnet_k}\),推导过程如下:

因为\(a_j\)可以看作是\(net_j\)的复合函数:

\[
a_j =\frac{e^{net_j}}{\sum_{m=1}^n e^{net_m}} = f(e^{net_j}, \sum_m e^{net_m})

\\

\]

所以:

\[\frac{da_j}{dnet_k} = \frac{da_j}{de^{net_k}} \frac{de^{net_k}}{dnet_k} + \frac{da_j}{d\sum_m e^{net_m}} \frac{d\sum_m e^{net_m}}{dnet_k} \\

\]

现在分两种情况:

  • 若 k = j
\[\frac{da_j}{dnet_k} =
\frac{da_j}{dnet_j}
=
\frac{da_j}{de^{net_j}} \frac{de^{net_j}}{dnet_j} + \frac{da_j}{d\sum_m e^{net_m}} \frac{d\sum_m e^{net_m}}{dnet_j} \\
\]

\(\because\)

\[

\begin{aligned}

\frac{da_j}{de^{net_j}} &= \frac{1}{\sum_j e^{net_j}} \\

\frac{de^{net_j}}{dnet_j} &= e^{net_j}\\

\frac{da_j}{d\sum_m e^{net_m}} &= - \frac{e^{net_j}}{(\sum_m e^{net_m})^2} \\

\frac{d\sum_m e^{net_m}}{dnet_k} &= \frac{d\sum_m e^{net_m}}{de^{net_k}} \frac{de^{net_k}}{dnet_k}
= e^{net_k} \\

\end{aligned}
\]

\(\therefore\)

\[

\frac{da_j}{dnet_k} =
\frac{da_j}{dnet_j}
= a_j(1-a_j)
\]

  • 若 k \(\neq\) j
\[\frac{da_j}{dnet_k} = \frac{da_j}{de^{net_k}} \frac{de^{net_k}}{dnet_k} + \frac{da_j}{d\sum_m e^{net_m}} \frac{d\sum_m e^{net_m}}{dnet_k} \\
\]

\(\because\)

\[

\begin{aligned}

\frac{da_j}{de^{net_k}} &= 0 \\

\frac{da_j}{d\sum_m e^{net_m}} &= - \frac{e^{net_j}}{(\sum_m e^{net_m})^2} \\

\frac{d\sum_m e^{net_m}}{dnet_k} &= e^{net_k} \\

\end{aligned}
\]

\(\therefore\)

\[

\frac{da_j}{dnet_k}
= -a_j a_k
\]

经过上面的推导后,写成向量的形式就是:

\[
\overrightarrow{\delta_{输出层}} = \begin{bmatrix}
- \frac{1}{a_j} \cdot (-a_j a_1) \\
\vdots \\
- \frac{1}{a_j} \cdot (a_j(1-a_j)) \\
\vdots \\
- \frac{1}{a_j} \cdot (-a_j a_n) \\
\end{bmatrix}

= \begin{bmatrix}
a_1 \\
\vdots \\
a_j - 1 \\
\vdots \\
a_n \\
\end{bmatrix}

= \overrightarrow{a_{输出层}} - \overrightarrow{y} \\

\]

结学

  • 如何加快多分类的训练速度?
  • 根据交叉熵损失函数和softmax,推导误差项的过程是什么?

任务:识别手写数字使用交叉熵损失函数和softmax激活函数

  • 请在“识别手写数字Demo”中使用交叉熵损失函数和softmax激活函数,并且加入“通过打印loss来判断收敛”

    答:待实现的代码为:NewCross_softmax,实现后的代码为:NewCross_softmax_answer
  • 请每个同学运行代码
    • 刚开始训练时,有什么警告?

      答:如下图所示:有“输出层梯度过大”的警告

    • 注释掉警告代码后,看下loss的训练速度与之前的代码相比是否明显加快?

      答:没有

任务:改进代码

  • 找到发生警告的原因?

    答:

    因为输出层加权和没有做缩小处理,所以加权和比较大(范围为[10.0,15.0]左右)。

    通过上图(softmax的图像)可知,该范围内的梯度很大,所以报“梯度爆炸”的警告
  • 如何改进代码?

    答:将输出层的学习率变小为0.1
  • 将输出层的学习率分别变小为1.0、0.1,运行代码,看是否解决了警告,并提升了训练速度?

    答:变小为0.1后运行代码的结果如下图所示:



    我们看到只需要四轮训练既达到95%的正确率

    那么为什么在正确率到88%后会开始报输出层的一些梯度值过小的警告呢?这是因为此时loss小,所以梯度也小了

总结

  • 请总结本节课的内容?
  • 请回答所有主问题?

参考资料

谢谢你~

深度学习基础课:使用交叉熵损失函数和Softmax激活函数(下)的更多相关文章

  1. 深度学习基础5:交叉熵损失函数、MSE、CTC损失适用于字识别语音等序列问题、Balanced L1 Loss适用于目标检测

    深度学习基础5:交叉熵损失函数.MSE.CTC损失适用于字识别语音等序列问题.Balanced L1 Loss适用于目标检测 1.交叉熵损失函数 在物理学中,"熵"被用来表示热力学 ...

  2. 【转载】深度学习中softmax交叉熵损失函数的理解

    深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原 ...

  3. 深度学习原理与框架-神经网络结构与原理 1.得分函数 2.SVM损失函数 3.正则化惩罚项 4.softmax交叉熵损失函数 5. 最优化问题(前向传播) 6.batch_size(批量更新权重参数) 7.反向传播

    神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, ...

  4. [ch03-02] 交叉熵损失函数

    系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entrop ...

  5. 关于交叉熵损失函数Cross Entropy Loss

    1.说在前面 最近在学习object detection的论文,又遇到交叉熵.高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个 ...

  6. softmax交叉熵损失函数求导

    来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福 ...

  7. 机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵

    经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q( ...

  8. 吴裕雄--天生自然 pythonTensorFlow自然语言处理:交叉熵损失函数

    import tensorflow as tf # 1. sparse_softmax_cross_entropy_with_logits样例. # 假设词汇表的大小为3, 语料包含两个单词" ...

  9. BCE和CE交叉熵损失函数的区别

    首先需要说明的是PyTorch里面的BCELoss和CrossEntropyLoss都是交叉熵,数学本质上是没有区别的,区别在于应用中的细节. BCE适用于0/1二分类,计算公式就是 " - ...

  10. 【深度学习】深入理解ReLU(Rectifie Linear Units)激活函数

    论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) Part 0:传统激活函数.脑神经元激活频率研究.稀疏激活性 0.1  一般激活函数有 ...

随机推荐

  1. JWT简单使用

    创建一个Maven项目,并导入jar包 <?xml version="1.0" encoding="UTF-8"?> <project xml ...

  2. Storm 集群的搭建及其Java编程进行简单统计计算

    一.Storm集群构建 编写storm 与 zookeeper的yml文件 storm yml文件的编写 具体如下: version: '2' services: zookeeper1: image: ...

  3. Scrapy集成selenium-案例-淘宝首页推荐商品获取

    scrapy特性就是效率高,异步,如果非要集成selenium实际上意义不是特别大....因为selenium慢.... 案例:淘宝首页推荐商品的标题获取 爬虫类 toabao.py import s ...

  4. MinIO客户端之ping

    MinIO提供了一个命令行程序mc用于协助用户完成日常的维护.管理类工作. 官方资料 mc ping 检查指定的MinIO节点的服务是否可用. 不带参数,命令如下: ./mc ping local1 ...

  5. 如何用.net制作一个简易爬虫抓取华为应用市场数据

    公司最近要做一款手机,手机需要制作一个应用市场.那么问题来了,自己制作应用市场,数据从哪来呢?作为一个创业型公司.搜集数据变成为了难题. 于是突然想到能不能通过程序去抓取别人应用市场的数据-- 那么我 ...

  6. electron入门之创建新窗口remote(一)

    electron入门到入土,从渲染线程中创建新窗口.2022-03-21入门版本17.1.2 electron重要概念,只有一个主线程,其他都是渲染进程或者叫子线程,他们不能直接相互操作,可以通过ip ...

  7. 2023-09-10:用go语言编写。作为项目经理,你规划了一份需求的技能清单 req_skills, 并打算从备选人员名单 people 中选出些人组成一个「必要团队」 ( 编号为 i 的备选人员

    2023-09-10:用go语言编写.作为项目经理,你规划了一份需求的技能清单 req_skills, 并打算从备选人员名单 people 中选出些人组成一个「必要团队」 ( 编号为 i 的备选人员 ...

  8. 原理一、Java中的HashMap的实现

    文章从JDK1.7和JDK1.8两个版本解析HashMap的实现原理及其中常见的面试题(两个版本HashMap最大的区别,1.7版HashMap=数组+链表,1.8版HashMap=数组+红黑树+链表 ...

  9. 第十一部分_Shell脚本之正则表达式

    正则表达式 1. 正则表达式是什么? 正则表达式(Regular Expression.regex或regexp,缩写为RE),也译为正规表示法.常规表示法,是一种字符模式,用于在查找过程中匹配指定的 ...

  10. 5步教你将MRS数据导入DWS

    摘要:GaussDB(DWS)支持在相同网络中,配置一个GaussDB(DWS)集群连接到一个MRS集群,然后将数据从HDFS中的文件读取到GaussDB(DWS). MapReduce服务(MapR ...