D - 文理分科 (网络流->最小割)
题目链接:https://cn.vjudge.net/contest/281959#problem/D
题目大意:中文题目
具体思路:我们需要求出最大的满意值,从另一方面想,我们可以求出总的满意值,然后再求出不符合情况的最小的代价,这两个相减,就能求出最大的满意值,这个时候就可以通过最小割来求了(最小割:使得整个图不连通的最小花费)。
这一篇博客讲的很好:https://blog.csdn.net/yakeding/article/details/79357545
AC代码:
#include<iostream>
#include<stack>
#include<queue>
#include<iomanip>
#include<stdio.h>
#include<cstring>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<vector>
using namespace std;
# define ll long long
# define maxn +
# define inf 0x3f3f3f3f
int prev[maxn];//边的编号
int head[maxn];
int f[][]= {{,-,,},{,,,-}};
struct node
{
int to;
int flow;
int nex;
} edge[maxn];
int num,st,ed;
void init()
{
memset(head,-,sizeof(head));
num=;
}
void addedge(int fr,int to,int flow)
{
edge[num].to=to;
edge[num].flow=flow;
edge[num].nex=head[fr];
head[fr]=num++;
edge[num].to=fr;
edge[num].flow=;
edge[num].nex=head[to];
head[to]=num++;
}
bool bfs()
{
memset(prev,-,sizeof(prev));
prev[st]=;
queue<int>q;
q.push(st);
while(!q.empty())
{
int top=q.front();
q.pop();
for(int i=head[top]; i!=-; i=edge[i].nex)
{
int temp=edge[i].to;
if(prev[temp]==-&&edge[i].flow>)
{
prev[temp]=prev[top]+;
q.push(temp);
}
}
}
return prev[ed]!=-;
}
int dfs(int u,int flow)
{
if(u==ed)
return flow;
int res=;
for(int i=head[u]; i!=-; i=edge[i].nex)
{
int t=edge[i].to;
if(prev[t]==(prev[u]+)&&edge[i].flow>)
{
int temp=dfs(t,min(flow,edge[i].flow));
edge[i].flow-=temp;
edge[i^].flow+=temp;
res+=temp;
flow-=temp;
if(flow==)
break;
}
}
if(res==)
prev[u]=-;
return res;
}
int n,m;
int dinic()
{
int ans=;
while(bfs())
{
ans+=dfs(st,inf);
}
return ans;
}
bool judge(int t1,int t2)
{
if(t1>=&&t1<=n&&t2>=&&t2<=m)
return true;
return false;
}
int main()
{
init();
int sum=;
int tmp;
st=1e5,ed=1e5+;
scanf("%d %d",&n,&m);
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge((i-)*m+j,ed,tmp);
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge(st,(i-)*m+j,tmp);
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
addedge((i-)*m+j,((i-)*m+j)+n*m,inf);
addedge(((i-)*m+j)+n*m,ed,tmp);
sum+=tmp;
for(int k=; k<; k++)
{
int x=i+f[][k];
int y=j+f[][k];
if(judge(x,y))
addedge((x-)*m+y,((i-)*m+j)+n*m,inf);
}
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge(((i-)*m+j)+n*m*,(i-)*m+j,inf);
addedge(st,((i-)*m+j)+n*m*,tmp);
for(int k=; k<; k++)
{
int x=i+f[][k];
int y=j+f[][k];
if(judge(x,y))
addedge(((i-)*m+j)+n*m*,(x-)*m+y,inf);
}
}
}
// cout<<1<<endl;
int ans=dinic();
// cout<<1<<endl;
printf("%d\n",sum-ans);
return ;
}
D - 文理分科 (网络流->最小割)的更多相关文章
- 【bzoj3894】文理分科 网络流最小割
原文地址:http://www.cnblogs.com/GXZlegend 题目描述 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用 ...
- BZOJ_3894_文理分科&&BZOJ_2127_happiness_最小割
BZOJ_3894_文理分科_最小割 Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进 ...
- 【BZOJ3894】文理分科(最小割)
[BZOJ3894]文理分科(最小割) 题面 BZOJ Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个 ...
- [Bzoj3894]文理分科(最小割)
Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格子代表一个同学的座位.每位 ...
- [BZOJ 3894] 文理分科 【最小割】
题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...
- bzoj 3894 文理分科【最小割+dinic】
谁说这道和2127是双倍经验的来着完全不一样啊? 数组开小会TLE!数组开小会TLE!数组开小会TLE! 首先sum统计所有收益 对于当前点\( (i,j) \)考虑,设\( x=(i-1)*m+j ...
- 【题解】 bzoj3894: 文理分科 (网络流/最小割)
bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...
- 【bzoj3774】最优选择 网络流最小割
题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...
- 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割
题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...
随机推荐
- ELK--filebeat详解
Filebeat提供了几种不同的方式来启用模块: 在modules.d编辑目录中启用模块配置 运行Filebeat 编辑时启用模块 在filebeat.yml文件编辑中启用模块配置 例如,要在 目录中 ...
- hadoop MapReduce 入门
原创播客,如需转载请注明出处.原文地址:http://www.cnblogs.com/crawl/p/7687120.html ------------------------------------ ...
- Lights inside a 3d Grid UVA - 11605(概率)
题意: 给出一个n * m * h的空间 每次任意选择两个点 使得在以这两个点连线为对角线的空间的点的值 取反 (初始为0) 求经过k次操作后最后有多少点的值为1 解析: 遇到坐标分维去看 把三 ...
- Oracle JDK迁移指南
Oracle JDK迁移指南 https://docs.oracle.com/en/java/javase/11/migrate/index.html#JSMIG-GUID-C25E2B1D-6C24 ...
- React Native——组件FlatList
属性 添加头部组件 ListHeaderComponent属性用来给FlatList添加头部组件 简单使用: //ES6之前写法 _header = function () { return ( &l ...
- tf 常用函数 28原则
一个tensorflow图由以下几部分组成: 占位符变量(Placeholder)用来改变图的输入. 模型变量(Model)将会被优化,使得模型表现得更好. 模型本质上就是一些数学函数,它根据Plac ...
- 【洛谷P3586】LOG
题目大意:维护一个集合,支持单点修改.查询小于 X 的数的个数.查询小于 X 的数的和. 题解:学习到了动态开点线段树.对于一棵未经离散化的权值线段树来说,对于静态开点来说,过大的值域会导致不能承受的 ...
- <? extends T>和<? super T>的理解
背景:对泛型中使用super和extends关键字进行分析总结. 问题: public class TestExtend { public static void main(String[] args ...
- hdu 1097 A hard puzzle 快速幂取模
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A ha ...
- JS基本包装类型之三(String)
1. 基本数据类型和基本包装类型 这里以字符串类型来讲解基本数据类型和基本包装类型. JS中存在基本数据类型String(typeof返回"string"), 也存在基本包装数据类 ...