D - 文理分科 (网络流->最小割)
题目链接:https://cn.vjudge.net/contest/281959#problem/D
题目大意:中文题目
具体思路:我们需要求出最大的满意值,从另一方面想,我们可以求出总的满意值,然后再求出不符合情况的最小的代价,这两个相减,就能求出最大的满意值,这个时候就可以通过最小割来求了(最小割:使得整个图不连通的最小花费)。
这一篇博客讲的很好:https://blog.csdn.net/yakeding/article/details/79357545
AC代码:
#include<iostream>
#include<stack>
#include<queue>
#include<iomanip>
#include<stdio.h>
#include<cstring>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
#include<vector>
using namespace std;
# define ll long long
# define maxn +
# define inf 0x3f3f3f3f
int prev[maxn];//边的编号
int head[maxn];
int f[][]= {{,-,,},{,,,-}};
struct node
{
int to;
int flow;
int nex;
} edge[maxn];
int num,st,ed;
void init()
{
memset(head,-,sizeof(head));
num=;
}
void addedge(int fr,int to,int flow)
{
edge[num].to=to;
edge[num].flow=flow;
edge[num].nex=head[fr];
head[fr]=num++;
edge[num].to=fr;
edge[num].flow=;
edge[num].nex=head[to];
head[to]=num++;
}
bool bfs()
{
memset(prev,-,sizeof(prev));
prev[st]=;
queue<int>q;
q.push(st);
while(!q.empty())
{
int top=q.front();
q.pop();
for(int i=head[top]; i!=-; i=edge[i].nex)
{
int temp=edge[i].to;
if(prev[temp]==-&&edge[i].flow>)
{
prev[temp]=prev[top]+;
q.push(temp);
}
}
}
return prev[ed]!=-;
}
int dfs(int u,int flow)
{
if(u==ed)
return flow;
int res=;
for(int i=head[u]; i!=-; i=edge[i].nex)
{
int t=edge[i].to;
if(prev[t]==(prev[u]+)&&edge[i].flow>)
{
int temp=dfs(t,min(flow,edge[i].flow));
edge[i].flow-=temp;
edge[i^].flow+=temp;
res+=temp;
flow-=temp;
if(flow==)
break;
}
}
if(res==)
prev[u]=-;
return res;
}
int n,m;
int dinic()
{
int ans=;
while(bfs())
{
ans+=dfs(st,inf);
}
return ans;
}
bool judge(int t1,int t2)
{
if(t1>=&&t1<=n&&t2>=&&t2<=m)
return true;
return false;
}
int main()
{
init();
int sum=;
int tmp;
st=1e5,ed=1e5+;
scanf("%d %d",&n,&m);
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge((i-)*m+j,ed,tmp);
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge(st,(i-)*m+j,tmp);
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
addedge((i-)*m+j,((i-)*m+j)+n*m,inf);
addedge(((i-)*m+j)+n*m,ed,tmp);
sum+=tmp;
for(int k=; k<; k++)
{
int x=i+f[][k];
int y=j+f[][k];
if(judge(x,y))
addedge((x-)*m+y,((i-)*m+j)+n*m,inf);
}
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
{
scanf("%d",&tmp);
sum+=tmp;
addedge(((i-)*m+j)+n*m*,(i-)*m+j,inf);
addedge(st,((i-)*m+j)+n*m*,tmp);
for(int k=; k<; k++)
{
int x=i+f[][k];
int y=j+f[][k];
if(judge(x,y))
addedge(((i-)*m+j)+n*m*,(x-)*m+y,inf);
}
}
}
// cout<<1<<endl;
int ans=dinic();
// cout<<1<<endl;
printf("%d\n",sum-ans);
return ;
}
D - 文理分科 (网络流->最小割)的更多相关文章
- 【bzoj3894】文理分科 网络流最小割
原文地址:http://www.cnblogs.com/GXZlegend 题目描述 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用 ...
- BZOJ_3894_文理分科&&BZOJ_2127_happiness_最小割
BZOJ_3894_文理分科_最小割 Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进 ...
- 【BZOJ3894】文理分科(最小割)
[BZOJ3894]文理分科(最小割) 题面 BZOJ Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠 结过) 小P所在的班级要进行文理分科.他的班级可以用一个 ...
- [Bzoj3894]文理分科(最小割)
Description 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用一个n*m的矩阵进行描述,每个格子代表一个同学的座位.每位 ...
- [BZOJ 3894] 文理分科 【最小割】
题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...
- bzoj 3894 文理分科【最小割+dinic】
谁说这道和2127是双倍经验的来着完全不一样啊? 数组开小会TLE!数组开小会TLE!数组开小会TLE! 首先sum统计所有收益 对于当前点\( (i,j) \)考虑,设\( x=(i-1)*m+j ...
- 【题解】 bzoj3894: 文理分科 (网络流/最小割)
bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...
- 【bzoj3774】最优选择 网络流最小割
题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...
- 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割
题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...
随机推荐
- 图片上传到七牛云/阿里云的OSS
1.准备 七牛云/阿里云OSS https://github.com/pfinal/storage 2.composer安装包 安装 composer require pfinal/storage 本 ...
- 一个开启多个事务导致OptimisticLockException异常的问题
异常信息:org.eclipse.persistence.exceptions.OptimisticLockException 对象在其他的事物中被修改,而造成这一个问题的原因是:同时开启了两个事务, ...
- UOJ#192. 【UR #14】最强跳蚤
题目链接 http://uoj.ac/problem/192 暑期课第二天 树上问题进阶 具体内容看笔记博客吧 题意 n个节点的树T 边有边权w 求满足(u, v)上所有边权乘积为完全平方数的路径有多 ...
- NOIP2013题解
NOIP2013题解 Day1 转圈游戏 circle 快速幂模板题. #include<iostream> using namespace std; int n,m,k,x; int f ...
- R语言:多个因变量时,如何在plot函数中画多条曲线(plot,points,lines,legend函数)
最近阅读一篇文献<Regional and individual variations in the function of the human eccrine sweat gland>, ...
- zoj 3195(LCA加强版)
传送门:Problem 3195 https://www.cnblogs.com/violet-acmer/p/9686774.html 题意: 给一个无根树,有q个询问,每个询问3个点(a,b,c) ...
- vuejs怎么在服务器部署?(知乎)
作者:知乎用户链接:https://www.zhihu.com/question/46630687/answer/157166318来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...
- gdb调试1--包括反汇编及文件编码设置
一.编译 gcc的完整编译过程大致为:预处理->编译->汇编->链接 前三个步骤分别对应了-E.-S.-c三个选项. 编译阶段 命令 截断后的产物 C源程序 预处理 gcc ...
- nginx设置反向代理后端jenklins,页面上的js css文件无法加载
转载 2017年06月14日 22:36:59 8485 问题现象: nginx配置反向代理后,网页可以正常访问,但是页面上的js css文件无法加载,页面样式乱了. (1)nginx配置如下: (2 ...
- 功能要求:定义一个两行三列的二维数组 names 并赋值,使用二重循环输出二维数组中的元素。
功能要求:定义一个两行三列的二维数组 names 并赋值,使用二重循环输出二维数组中的元素 names={{"tom","jack","mike&qu ...