【BZOJ-4547】小奇的集合 矩阵乘法 + 递推
4547: Hdu5171 小奇的集合
Time Limit: 2 Sec Memory Limit: 256 MB
Submit: 175 Solved: 85
[Submit][Status][Discuss]
Description
有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大
Input
第一行有两个整数n,k表示初始元素数量和操作数,第二行包含n个整数表示初始时可重集的元素。
Output
Sample Input
3 6
Sample Output
HINT
Source
Solution
很显然,每次操作都是取最大和次大相加,然后如此下去
如此这样发现,显然是一个fib前缀和的问题,那么显然可以递推
优化这个递推,显然可以矩阵乘法
$\begin{bmatrix}S[max]& S[cmax]& Sum \end{bmatrix}*(\begin{bmatrix} 1& &1& &0\\ 1& &0& &0\\ 1& &1& &1 \end{bmatrix})^{K}$
其中S[max]表示最大,S[cmax]表示次大
如果初始的次大<0先不断累加最大,到>=0为止,然后进行上述处理
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 100010
#define L 4
#define sz 3
#define p 10000007
int N,K;
int S[MAXN];
int sum;
struct MatNode{int a[L][L]; MatNode() {memset(a,,sizeof(a));}}A,D;
MatNode MatMul(MatNode X,MatNode Y)
{
MatNode C;
for (int k=; k<=sz; k++)
for (int i=; i<=sz; i++)
for (int j=; j<=sz; j++)
if (X.a[i][k] && Y.a[k][j])
(C.a[i][j]+=(long long)X.a[i][k]*Y.a[k][j]%p)%=p;
return C;
}
MatNode MatPow(MatNode x,int y)
{
MatNode re;
for (int i=; i<=sz; i++) re.a[i][i]=;
for (int i=y; i; i>>=,x=MatMul(x,x))
if (i&) re=MatMul(re,x);
return re;
}
void BuildMat()
{
A.a[][]=; A.a[][]=; A.a[][]=;
A.a[][]=; A.a[][]=; A.a[][]=;
A.a[][]=; A.a[][]=; A.a[][]=;
D.a[][]=S[]; D.a[][]=S[]; D.a[][]=sum;
}
bool cmp(int a,int b) {return a>b;}
int main()
{
N=read(),K=read();
for (int i=; i<=N; i++) S[i]=read(),sum+=S[i],sum=(sum+p)%p;
sort(S+,S+N+,cmp);
while (S[]< && K>)
{
S[]=(S[]+S[])%p; K--;
sum+=S[]; sum=(sum+p)%p;
}
BuildMat();
D=MatMul(MatPow(A,K),D);
int ans=(D.a[][]+p)%p;
printf("%d\n",ans);
return ;
}
【BZOJ-4547】小奇的集合 矩阵乘法 + 递推的更多相关文章
- bzoj4547: Hdu5171 小奇的集合(矩阵乘法)
4547: Hdu5171 小奇的集合 题目:传送门 题解: 做一波大佬们的坑...ORZ 不得不说,我觉得矩阵很简单啊,就一个3*3的(直接看代码吧) 给个递推柿纸:f[i]=f[i-1]+max1 ...
- 【BZOJ4547】Hdu5171 小奇的集合 矩阵乘法
[BZOJ4547]Hdu5171 小奇的集合 Description 有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大值.(数据保证这 ...
- bzoj 4547 小奇的集合
Description 有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大 值.(数据保证这个值为非负数) Input 第一行有两个整数n ...
- HDU 4914 Linear recursive sequence(矩阵乘法递推的优化)
题解见X姐的论文 矩阵乘法递推的优化.仅仅是mark一下. .
- 【BZOJ-2476】战场的数目 矩阵乘法 + 递推
2476: 战场的数目 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 58 Solved: 38[Submit][Status][Discuss] D ...
- [TJOI2019]甲苯先生的字符串——矩阵乘法+递推
题目链接: [TJOI2019]甲苯先生的字符串 我们用一个$26*26$的$01$矩阵记录任意两个字符是否能相邻. 设$f[i][j]$表示处理完前$i$个字符,第$i$个字符为$j$的方案数. 可 ...
- BZOJ4547 Hdu5171 小奇的集合 【矩阵快速幂优化递推】
BZOJ4547 Hdu5171 小奇的集合 Description 有一个大小为n的可重集S,小奇每次操作可以加入一个数a+b(a,b均属于S),求k次操作后它可获得的S的和的最大值.(数据保证这个 ...
- bzoj 4031: 小Z的房间 矩阵树定理
bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时 ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
随机推荐
- Web安全测试之跨站请求伪造(CSRF)篇
跨站请求伪造(即CSRF)被Web安全界称为诸多漏洞中“沉睡的巨人”,其威胁程度由此“美誉”便可见一斑.本文将简单介绍该漏洞,并详细说明造成这种漏洞的原因所在,以及针对该漏洞的黑盒测试与灰盒子测试具体 ...
- 58种jQuery模拟CSS3过渡页面切换特效
演示网址 http://www.htmleaf.com/Demo/201503251573.html 点击下载
- 错题724-java
1.代码片段: byte b1=1,b2=2,b3,b6; final byte b4=4,b5=6; b6=b4+b5; b3=(b1+b2); System.out.println(b3+b6); ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- 发布我的图片预加载控件YPreLoadImg v1.0
介绍 大家好!很高兴向大家介绍我的图片预加载控件YPreLoadImg.它可以帮助您预加载图片,并且能显示加载的进度,在预加载完成后调用指定的方法. YPreLoadImg控件由一个名为PreLoad ...
- C#访问Azure的资源
官方参考资料在这里:https://msdn.microsoft.com/en-us/library/azure/dn722415.aspx,本文放一些重点及遇到的坑的解决办法. 身份验证 不是说,我 ...
- Linux C中结构体初始化
在阅读GNU/Linux内核代码时,我们会遇到一种特殊的结构初始化方式.该方式是某些C教材(如谭二版.K&R二版)中没有介绍过的.这种方式称为指定初始化(designated in ...
- PS技能大全
1.设置固定的图片大小 参考:http://jingyan.baidu.com/album/642c9d3418bec4644a46f72a.html?picindex=1
- JavaScript变量的作用域和函数的作用域的区别
变量作用域和函数作用域都涉及到变量值的变化,本文旨在让大家明白他们之间的区别 变量的作用域: 变量的作用域无非就是两种:全局变量和局部变量. Javascript语言的特殊之处,就在于函数内部可以直接 ...
- Android开发之补间动画、XML方式定义补间动画
四种补间动画: 1.透明: 2.缩放: 3.位移: 4.旋转: //点击按钮 实现iv 透明的效果 动画 public void click1(View v) { //1.0意味着着完全不透明 0.0 ...