题目链接

题意:中文题,和上篇博客POJ 1222是一类题。

题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择。

代码:

#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdio>
using namespace std;
int s[],e[],g[][],n;
int gauss()
{
int row,col;
for(row=,col=;row<n&&col<n;col++)
{
int id=row;
for(int i=row;i<n;i++)
if(g[i][col]) id=i;
if(g[id][col])
{
for(int k=col;k<=n;k++)
swap(g[id][k],g[row][k]);
for(int i=row+;i<n;i++)
if(g[i][col])
for(int k=col;k<=n;k++)
g[i][k]^=g[row][k];
row++;
}
}
for(int i=row;i<n;i++)
if(g[i][n]) return -;
return <<(n-row);
}
int main()
{
//注意一定不要在主函数里定义n 这样会在输入的时候覆盖全局变量n
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
memset(g,,sizeof(g));
for(int i=;i<n;i++)
scanf("%d",&s[i]);
for(int i=;i<n;i++)
{
scanf("%d",&e[i]);
g[i][n]=s[i]^e[i];
g[i][i]=;
}
int a,b;
for(;;)
{
scanf("%d%d",&a,&b);
if(a==&&b==) break;
//这里注意题目中的下标是从1开始的
//而且ab不能写反 至于为什么不能写反还不清楚
g[b-][a-]=;
}
int ans=gauss();
if(ans==-)
puts("Oh,it's impossible~!!");
else
printf("%d\n",ans);
}
return ;
}

POJ 1830 开关问题 (高斯消元)的更多相关文章

  1. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  2. POJ 1830 开关问题 [高斯消元XOR]

    和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...

  3. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

  4. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  6. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  7. A - The Water Bowls POJ - 3185 (bfs||高斯消元)

    题目链接:https://vjudge.net/contest/276374#problem/A 题目大意:给你20个杯子,每一次操作,假设当前是对第i个位置进行操作,那么第i个位置,第i+1个位置, ...

  8. POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)

    依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...

  9. POJ 2065 SETI(高斯消元)

    题目链接:http://poj.org/problem?id=2065 题意:给出一个字符串S[1,n],字母a-z代表1到26,*代表0.我们用数组C[i]表示S[i]经过该变换得到的数字.给出一个 ...

随机推荐

  1. 【翻译】Tomcat 6.0 部署与发布

    本篇参考Tomcat官方文档:<First Webapp>翻译,并结合自己的开发经验介绍关于tomcat部署以及发布的相关内容. 1 目录结构 在tomcat中所有的应用都是放置在CATA ...

  2. Linux下查看文件内容的命令

    查看文件内容的命令: cat     由第一行开始显示内容,并将所有内容输出 tac     从最后一行倒序显示内容,并将所有内容输出 more    根据窗口大小,一页一页的现实文件内容 less ...

  3. 面试集锦-常量,const, const 对指针的影响

    在C语言中不可改变的数据(量)就是常量    在C语言中有三种常量        字面量(直接量),就是直接写出来的,从写法上就可以看出值与类型等,例如:19,123.456等        名字常量 ...

  4. hdu.1226.超级密码(bfs)

    超级密码 Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  5. 读取XML文件

    首先要确定好XML文件的位置,最好是放在程序的debug文件中,放在其他地方也可以,要写上绝对路径 using System; using System.Collections.Generic; us ...

  6. CSS DIV HOVER

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  7. iOS开发——UI基础-屏幕适配

    一.适配 1.什么是适配?适应.兼容各种不同的情况 2.移动开发中,适配的常见种类 2.1系统适配 针对不同版本的操作系统进行适配 2.2屏幕适配 针对不同大小的屏幕尺寸进行适配 二.点和像素 1.在 ...

  8. hiberante入门

    Hibernate 目前企业级应用一般均采用面向对象的开发方法,而内存中的对象数据不能永久存在,如想借用关系数据库来永久保存这些数据的话,无疑就存在一个对象-关系的映射过程.在这种情形下,诞生了许多解 ...

  9. [POJ3277]City Horizon

    [POJ3277]City Horizon 试题描述 Farmer John has taken his cows on a trip to the city! As the sun sets, th ...

  10. C语言文件操作

    C语言文件操作,以下以基本的例子和说明来展开怎么通过C语言来进行文件操作. 操作文件,我们得需要知道什么?当然是路径和文件名. 首先我需要知道我操作的文件在哪里,叫什么名字.在C语言中还存在一个打开方 ...