思路:欧拉函数;

欧拉函数,然后用下等差数列公式就行了。

 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<queue>
5 #include<math.h>
6 #include<vector>
7 #include<bitset>
8 using namespace std;
9 typedef long long LL;
10 bool prime[5000000];
11 int ans[1000000];
12 int oula[5000000];
13 int main(void)
14 {
15 int i,j;
16 for(i = 0; i < 5000000; i++)
17 {
18 oula[i] = i;
19 }
20 for(i = 2; i <10000 ; i++)
21 {
22 if(!prime[i])
23 {
24 for(j = i; (i*j) <= 5000000; j++)
25 prime[i*j] = true;
26 }
27 }
28 int cn = 0;
29 for(i = 2 ; i <= 5000000; i++)
30 if(!prime[i])
31 ans[cn++]=i;
32 oula[0] = 0;
33 oula[1] = 1;
34 for(i = 0; i < cn; i++)
35 {
36 for(j = 1; (ans[i]*j) <= 5000000; j++)
37 {
38 oula[ans[i]*j]/=ans[i];
39 oula[ans[i]*j]*=ans[i]-1;
40 }
41 }
42 int n;
43 while(scanf("%d",&n),n!=0)
44 { LL sum=0;
45 for(i = 2;i <=n ;i++)
46 { LL ak = (LL)(1+n/i)*(LL)(n/i)/2;
47 sum+=ak*oula[i];
48 }
49 printf("%lld\n",sum);
50 }return 0;
51 }

GCD - Extreme (II)(UVA11426)的更多相关文章

  1. 【UVa11426】GCD - Extreme (II)(莫比乌斯反演)

    [UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 ...

  2. UVA 11426 GCD - Extreme (II) (欧拉函数)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard ...

  3. GCD - Extreme (II) (欧拉函数妙用)

    https://cn.vjudge.net/problem/UVA-11426 题意:求 解题思路:我们可以定义一个变量dis[n],dis[n]意为1~(n-1)与n的gcd(最大公约数)的总和,那 ...

  4. UVA 11426 GCD - Extreme (II) (欧拉函数)题解

    思路: 虽然看到题目就想到了用欧拉函数做,但就是不知道怎么做... 当a b互质时GCD(a,b)= 1,由此我们可以推出GCD(k*a,k*b)= k.设ans[i]是1~i-1与i的GCD之和,所 ...

  5. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  6. 【Luogu1414】又是毕业季II(数论)

    [Luogu1414]又是毕业季II(数论) 题面 题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘 ...

  7. GCD 深入理解(一)

    http://www.cocoachina.com/industry/20140428/8248.html 本文由@nixzhu翻译至raywenderlich的<grand-central-d ...

  8. UVA 11426 - GCD - Extreme (II) (数论)

    UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...

  9. GCD 深入理解(二)

    转自@nixzhu的GitHub主页(译者:Riven.@nixzhu),原文<Grand Central Dispatch In-Depth: Part 2/2> 欢迎来到GCD深入理解 ...

随机推荐

  1. Swift-技巧(十一)重写运算符

    摘要 基础数据的运算可以直接使用四则运算符.在 Swift 中也可以通过重写四则运算符的方式,让 struct 或者 class 创建的结构体或者对象也能像基础数据那样直接使用四则运算符. Swift ...

  2. day15 数组

    day15 数组 数组 1.什么是数组? 什么是数组? 具备某种相同属性的数据集合 [root@localhost ~]# array_name=(ddd) [root@localhost ~]# d ...

  3. 【leetcode】122.Best Time to Buy and Sell Stock II(股票问题)

    You are given an integer array prices where prices[i] is the price of a given stock on the ith day. ...

  4. java poi导出多sheet页

    /** * @Title: exportExcel * @Description: 导出Excel的方法 * @param workbook * @param sheetNum (sheet的位置,0 ...

  5. Virtual Destructor

    Deleting a derived class object using a pointer to a base class that has a non-virtual destructor re ...

  6. 接口测试 python+PyCharm 环境搭建

    1.配置Python环境变量 a:我的电脑->属性->高级系统设置->环境变量->系统变量中的PATH变量. 变量名:PATH      修改变量值为:;C:\Python27 ...

  7. Spring(4):Mybatis和Spring整合

    第一步:创建数据库 MySQL代码 1 CREATE DATABASE `mybatis` ; 2 3 USE `mybatis`; 4 5 CREATE TABLE `user` ( 6 `id` ...

  8. 【Linux】【Shell】【Basic】Programming

    shell脚本编程: 编程语言的分类:根据运行方式 编译运行:源代码-->编译器(编译)-->程序文件 解释运行:源代码-->运行时启动解释器,又解释器边解释边运行 根据其编程过程中 ...

  9. Oracle 用户自定义数据类型

    用户自定义数据类型(User-defined Data Type)oracle支持对象类型(Object Type).嵌套类型(Nested Table Type)和可变数组类型(Varray Dat ...

  10. linux系统下安装dubbo-admin

    1.在安装dubbo-admin之前确保你得linux服务器上已经成功安装了jdk,tomcat, 若还没安装jdk以及tomcat则参考我的上一篇文章"linux环境下安装jdk,tomc ...