LOJ2267 SDOI2017 龙与地下城 FFT、概率密度函数、Simpson
概率论神仙题……
首先一个暴力做法是设\(f_{i,j}\)表示前\(i\)个骰子摇出点数和为\(j\)的概率,不难发现DP的过程是一个多项式快速幂,FFT优化可以做到\(O(XYlog(XY))\)
但是能够跑过\(4 \times 10^6\)的FFT应该很少见,所以我们对于\(Y\)比较大的部分需要另外考虑做法。
首先一个前置是概率密度函数:对于一个连续型随机变量\(p\),\(f(x)\)是\(p\)的概率密度函数当且仅当对于\(\forall l<r\),\(\int_l^r f(x)\)等于\(p\)随机到区间\([l,r]\)内的概率
还有一个前置是正态分布:对于一个连续型随机变量\(p\),如果它服从正态分布,且已知\(p\)的期望为\(\mu\),方差为\(\sigma^2\),那么\(p\)的概率密度函数为\(\frac{1}{\sqrt{2 \pi \sigma^2}}e^\frac{-(x - \mu)^2}{2}\)。下文中我们称变量\(p\)服从期望为\(\mu\)、方差为\(\sigma^2\)的正态分布为变量\(p\)服从\(N[\mu , \sigma^2]\)。
那么如果我们知道某一个变量服从正态分布,就可以直接得知它的概率密度函数,然后需要求落在一段区间内的概率就只需要Simpson积分一下就可以了。
但是似乎我们没法判断一个变量是否服从正态分布,所以还有一个最重要的定理:中心极限定理。定理本身比较复杂,我们只需要用到这个定理的一个小的推论,如下:
对于同分布、值独立的若干个变量\(x_1,x_2,...,x_n\),设其中任一变量取到的值的期望为\(\mu\),方差为\(\sigma^2\),那么当\(n\)足够大时,设\(P = \frac{\sum\limits_{i=1}^n x_i - n\mu}{\sqrt{n\sigma^2}}\),那么变量\(P\)服从\(N[0,1]\)。
也就是说当题目给出的\(Y\)足够大的时候,我们可以直接套用中心极限定理。当\(\sum\limits_{i=1}^n x_i \in [A,B]\),\(P \in [\frac{A - n\mu}{\sqrt{n\sigma^2}} , \frac{B - n\mu}{\sqrt{n\sigma^2}}]\),而一个随机变量的期望和方差已经在题目中给出了,我们可以直接把变量取值范围求出来然后对着概率密度函数Simpson积分就可以了。
所以我才不会说我写这道题纯属为了练Simpson积分
LOJ2267 SDOI2017 龙与地下城 FFT、概率密度函数、Simpson的更多相关文章
- BZOJ.4909.[SDOI2017]龙与地下城(正态分布 中心极限定理 FFT Simpson积分)
BZOJ 洛谷 https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3779# 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它 ...
- 洛谷P3779 [SDOI2017]龙与地下城(概率论+Simpson+FFT)
题面 传送门 题解 orz shadowice 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它用一个期望\(\mu\)和方差\(\sigma^2\)就可以描述,记为\(N(\mu,\si ...
- bzoj 4909 [Sdoi2017]龙与地下城
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4909 题解 目前为止仅仅在LOJ上A掉这道题(Loj真快!) 当然不是标准做法 显然我们只要 ...
- rvs产生服从指定分布的随机数 pdf概率密度函数 cdf累计分布函数 ppf 分位点函数
统计工作中几个常用用法在python统计函数库scipy.stats的使用范例. 正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法. 1.生成服从指定分布的随机数 norm.r ...
- 高斯分布(Gaussian Distribution)的概率密度函数(probability density function)
高斯分布(Gaussian Distribution)的概率密度函数(probability density function) 对应于numpy中: numpy.random.normal(loc= ...
- 函数的光滑化或正则化 卷积 应用 两个统计独立变量X与Y的和的概率密度函数是X与Y的概率密度函数的卷积
http://graphics.stanford.edu/courses/cs178/applets/convolution.html Convolution is an operation on t ...
- Kattis - heapsoffun Heaps of Fun (概率密度函数+dp)
题意:有一棵含有n个结点(n<=300)的根树,树上每个结点上的权值是从[0,ai](ai<=1e9)区间内随机的一个实数,问这棵树能形成一个最小堆的概率. 由于结点取值范围是1e9而且是 ...
- 使用Excel绘制F分布概率密度函数图表
使用Excel绘制F分布概率密度函数图表 利用Excel绘制t分布的概率密度函数的相同方式,可以绘制F分布的概率密度函数图表. F分布的概率密度函数如下图所示: 其中:μ为分子自由度,ν为分母自由度 ...
- PDF的来源——概率密度函数
//首发于简书,详见原文:https://www.jianshu.com/p/6493edd20d61 你不会还真的以为这是一篇讲怎么做pdf文件,怎么编辑.保存.美化的文章吧? 咳咳,很遗憾告诉你不 ...
随机推荐
- [USACO14MAR] Sabotage 二分答案 分数规划
[USACO14MAR] Sabotage 二分答案 分数规划 最终答案的式子: \[ \frac{sum-sum[l,r]}{n-len[l,r]}\le ans \] 转换一下: \[ sum[1 ...
- 微信小程序class封装http
config.js var config = { base_api_url:"https://douban.uieee.com/v2/" } export {config} uti ...
- Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism
借鉴了DenseNet的思想,用了空洞卷积而不是池化,使得特征图不会缩小,因此每个dense连接都可以直接连,最后一层是包括了前面所有层的特征图. 此外还加入了channel-wise的注意力,对每个 ...
- (二)Cisco dhcp snooping配置解释
#配置dhcp snooping相关命令 Switch(config)#ip dhcp snooping //打开DHCP Snooping功能Switch(config)#ip dhcp snoo ...
- IT 常用单词表
程序员英语单词册 前言 程序员必备的600个英语词汇(1) 程序员必备的600个英语词汇(2) 程序员必备的600个英语词汇(3) 程序员必备的600个英语词汇(4) 程序员不 ...
- HBase(一) —— 基本概念及使用
一.安装&启动 下载 https://mirrors.tuna.tsinghua.edu.cn/apache/hbase/2.1.8/ 快速开始文档,HBase2.1.8 http://hba ...
- 微信小程序之网络通信
关于网络通信,这里我使用的是wx.request,官方代码示例如下: wx.request({ url: 'test.php', //仅为示例,并非真实的接口地址 data: { x: '', y: ...
- Redis常见问题及解决方案
在Redis的运维使用过程中你遇到过那些问题,又是如何解决的呢?本文收集了一些Redis的常见问题以及解决方案,与大家一同探讨. 码字不易,欢迎大家转载,烦请注明出处:谢谢配合 你的Redis有big ...
- [LeetCode] 248. Strobogrammatic Number III 对称数III
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside ...
- [LeetCode] 445. Add Two Numbers II 两个数字相加之二
You are given two linked lists representing two non-negative numbers. The most significant digit com ...